

Learning Concurrency in
Python

Elliot Forbes

BIRMINGHAM - MUMBAI

Learning Concurrency in Python
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1140817

ISBN 978-1-78728-537-8

Credits

Author
Elliot Forbes

Copy Editor
Sonia Mathur

Reviewer
Nikolaus Gradwohl

Project Coordinator
Vaidehi Sawant

Commissioning Editor
Merint Mathew

Proofreader
Safis Editing

Acquisition Editor
Chaitanya Nair

Indexer
Francy Puthiry

Content Development Editor
Rohit Kumar Singh

Graphics
Abhinash Sahu

Technical Editors
Ketan Kamble

Production Coordinator
Nilesh Mohite

About the Author
Elliot Forbes he worked as a full-time software engineer at JPMorgan Chase for the last two
years. He graduated from the University of Strathclyde in Scotland in the spring of 2015
and worked as a freelancer developing web solutions while studying there.

He has worked on numerous different technologies such as GoLang and NodeJS and plain
old Java, and he has spent years working on concurrent enterprise systems. It is with this
experience that he was able to write this book.

Elliot has even worked at Barclays Investment Bank for a summer internship in London and
has maintained a couple of software development websites for the last three years.

About the Reviewer
Nikolaus Gradwohl was born 1976 in Vienna, Austria and always wanted to become an
inventor like Gyro Gearloose. When he got his first Atari, he figured out that being a
computer programmer is the closest he could get to that dream. For a living, he wrote
programs for nearly anything that can be programmed, ranging from an 8-bit
microcontroller to mainframes. In his free time, he likes to master on programming
languages and operating systems.

Nikolaus authored the Processing 2: Creative Coding Hotshot book, and you can see some of
his work on his blog at .

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Speed It Up! 6

History of concurrency 7
Threads and multithreading 8

What is a thread? 8
Types of threads 9

What is multithreading? 9
Processes 10

Properties of processes 11
Multiprocessing 12

Event-driven programming 13
Turtle 14

Breaking it down 15
Reactive programming 16

ReactiveX - RxPy 16
Breaking it down 18

GPU programming 19
PyCUDA 20
OpenCL 20
Theano 21

The limitations of Python 21
Jython 22
IronPython 23
Why should we use Python? 23

Concurrent image download 23
Sequential download 24

Breaking it down 24
Concurrent download 25

Breaking it down 26
Improving number crunching with multiprocessing 26

Sequential prime factorization 27
Breaking it down 27

Concurrent prime factorization 28
Breaking it down 29

Summary 30

[ii]

Chapter 2: Parallelize It 31

Understanding concurrency 32
Properties of concurrent systems 32

I/O bottlenecks 33
Understanding parallelism 35

CPU-bound bottlenecks 36
How do they work on a CPU? 36

Single-core CPUs 37
Clock rate 37
Martelli model of scalability 38
Time-sharing - the task scheduler 39
Multi-core processors 40

System architecture styles 41
SISD 41
SIMD 42
MISD 44
MIMD 44

Computer memory architecture styles 45
UMA 45
NUMA 46

Summary 48

Chapter 3: Life of a Thread 49

Threads in Python 49
Thread state 50
State flow chart 51

Python example of thread state 51
Breaking it down 52

Different types of threads 52
POSIX threads 53
Windows threads 53

The ways to start a thread 53
Starting a thread 53
Inheriting from the thread class 54
Breaking it down 54

Forking 55
Example 55
Breaking it down 55

Daemonizing a thread 56
Example 57
Breaking it down 57

[iii]

Handling threads in Python 57
Starting loads of threads 58

Example 58
Breaking it down 58

Slowing down programs using threads 59
Example 59
Breaking it down 60

Getting the total number of active threads 61
Example 61
Breaking it down 61

Getting the current thread 62
Example 62
Breaking it down 62

Main thread 63
Example 63
Breaking it down 63

Enumerating all threads 64
Example 64
Breaking it down 64

Identifying threads 65
Example 65
Breakdown 66

Ending a thread 67
Best practice in stopping threads 67
Example 67
Output 68

Orphan processes 68
How does the operating system handle threads 68

Creating processes versus threads 68
Example 69
Breaking it down 69

Multithreading models 70
One-to-one thread mapping 71
Many-to-one 71
Many-to-many 72

Summary 73

Chapter 4: Synchronization between Threads 74

Synchronization between threads 75
The Dining Philosophers 75

Example 77
Output 78

Race conditions 78
Process execution sequence 79

[iv]

The solution 80
Critical sections 81

Filesystem 81
Life-critical systems 81

Shared resources and data races 82
The join method 83

Breaking it down 83
Putting it together 84

Locks 84
Example 84
Breaking it down 86

RLocks 86
Example 87
Breaking it down 87

Output 88
RLocks versus regular locks 89
Condition 90

Definition 90
Example 90

Our publisher 90
Our subscriber 91
Kicking it off 92

The results 93
Semaphores 93

Class definition 94
Example 94
The TicketSeller class 94

Output 96
Thread race 96

Bounded semaphores 96
Events 97

Example 98
Breaking it down 98

Barriers 98
Example 99
Breaking it down 99

Output 100
Summary 101

Chapter 5: Communication between Threads 102

Standard data structures 103
Sets 103

Extending the class 103
Exercise - extending other primitives 104

Decorator 104

[v]

Class decorator 105
Lists 106
Queues 107

FIFO queues 107
Example 108
Breaking it down 108
Output 109

LIFO queues 109
Example 110
Breaking it down 111
Output 111

PriorityQueue 112
Example 112
Breakdown 113
Output 114

Queue objects 114
Full/empty queues 114

Example 115
Output 115

The join() function 115
Example 116
Breakdown 117
Output 117

Deque objects 117
Example 117
Breakdown 118
Output 118

Appending elements 119
Example 119
Breaking it down 119
Output 120

Popping elements 120
Example 120
Breaking it down 121
Output 121

Inserting elements 121
Example 122
Breaking it down 122
Output 122

Rotation 122
Example 123
Breaking it down 123
Output 124

Defining your own thread-safe communication structures 124
A web Crawler example 124

Requirements 125

[vi]

Design 125
Our Crawler class 125
Our starting point 127
Extending the queue object 129

Breaking it down 129
Output 129

Future enhancements 130
Conclusion 130
Exercise - testing your skills 131

Summary 131

Chapter 6: Debug and Benchmark 132

Testing strategies 133
Why do we test? 133
Testing concurrent software systems 134
What should we test? 134
Unit tests 134

PyUnit 135
Example 135
Output 136

Expanding our test suite 136
Unit testing concurrent code 136
Integration tests 137

Debugging 138
Make it work as a single thread 138
Pdb 139

An interactive example 140
Catching exceptions in child threads 142

Benchmarking 143
The timeit module 144

Timeit versus time 145
Command-line example 145
Importing timeit into your code 145

Utilizing decorators 147
Timing context manager 147

Output 149
Profiling 149

cProfile 149
Simple profile example 150

The line_profiler tool 152
Kernprof 152

Memory profiling 154
Memory profile graphs 155

Summary 158

[vii]

Chapter 7: Executors and Pools 159

Concurrent futures 159
Executor objects 160

Creating a ThreadPoolExecutor 160
Example 161
Output 161

Context manager 162
Example 162
Output 163

Maps 163
Example 164
Output 164

Shutdown of executor objects 164
Example 165
Output 165

Future objects 166
Methods in future objects 166

The result() method 166
The add_done_callback() method 167
The .running() method 167
The cancel() method 167
The .exception() method 167
The .done() method 167

Unit testing future objects 168
The set_running_or_notify_cancel() method 168
The set_result() method 168
The set_exception() method 168

Cancelling callable 168
Example 169
Output 170

Getting the result 170
Example 171
Output 172

Using as_completed 172
Example 172
Output 173

Setting callbacks 174
Example 174
Output 175
Chaining callbacks 176

Exception classes 176
Example 176
Output 177

ProcessPoolExecutor 178
Creating a ProcessPoolExecutor 178

[viii]

Example 178
Output 179

Context Manager 179
Example 179
Output 180

Exercise 180
Getting started 180

Improving the speed of computationally bound problems 180
Full code sample 181
Output 182

Improving our crawler 183
The plan 183

New improvements 184
Refactoring our code 184
Storing the results in a CSV file 186

Exercise - capture more info from each page crawl 187
concurrent.futures in Python 2.7 188
Summary 188

Chapter 8: Multiprocessing 189

Working around the GIL 189
Utilizing sub-processes 190

Example 190
Output 191

The life of a process 191
Starting a process using fork 191
Spawning a process 192
Forkserver 192
Daemon processes 192

Example 193
Breaking it down 193
Output 193

Identifying processes using PIDs 194
Example 194
Output 195

Terminating a process 196
Example 196

Getting the current process 197
Subclassing processes 197

Example 198
Output 198

Multiprocessing pools 199

[ix]

The difference between concurrent.futures.ProcessPoolExecutor and
Pool 199
Context manager 200

Example 200
Output 201

Submitting tasks to a process pool 201
Apply 201
Apply_async 202
Map 203
Map_async 204
Imap 204
Imap_unordered 205
Starmap 206
Starmap_async 207
Maxtasksperchild 207

Communication between processes 208
Pipes 209

Anonymous pipes 209
Named pipes 209

Working with pipes 210
Example 210

Handling Exceptions 211
Using pipes 211

Multiprocessing managers 212
Namespaces 213

Example 213
Queues 214

Example 214
Output 215

Listeners and clients 215
Example 216
The Listener class 216
The Client class 217
Output 217

Logging 218
Example 218

Communicating sequential processes 220
PyCSP 220

Processes in PyCSP 221
Output 221

Summary 222

Chapter 9: Event-Driven Programming 223

Event-driven programming 224

[x]

The event loop 225
Asyncio 226

Getting started 227
Event loops 227

The run_forever() method 227
The run_until_complete() method 228
The stop() method 229
The is_closed() method 229
The close() function 230

Tasks 230
Example 230
The all_tasks(loop=None) method 231
The current_tasks() function 232
The cancel() function 233

Task functions 234
The as_completed(fs, *, loop=None, timeout=None) function 234
The ensure_future(coro_or_future, *, loop=None) function 234
The wrap_future(future, *, loop=None) function 234
The gather(*coroes_or_futures, loop=None, return_exceptions=False) function 235
The wait() function 235

Futures 236
Example 237
Output 237

Coroutines 237
Chaining coroutines 238
Output 241

Transports 241
Protocols 241
Synchronization between coroutines 242

Locks 242
Queues 244
Events and conditions 245

Semaphores and BoundedSemaphores 245
Sub-processes 246

Debugging asyncio programs 246
Debug mode 246

Twisted 248
A simple web server example 248

Gevent 250
Event loops 250
Greenlets 251
Simple example-hostnames 251

Output 252

[xi]

Monkey patching 252
Summary 253

Chapter 10: Reactive Programming 254

Basic reactive programming 255
Maintaining purity 255

ReactiveX, or RX 255
Installing RxPY 256
Observables 257

Creating observers 257
Example 257
Example 2 259
Breaking it down 259
Output 260

Lambda functions 260
Example 261
Breaking it down 261
On_next, on_completed, and on_error in lambda form 262
Output 263

Operators and chaining 263
Filter example 263
Breaking it down 264
Chained operators 264

The different operators 265
Creating observables 265
Transforming observables 265
Filtering observables 266
Error-handling observables 266

Hot and cold observables 266
Emitting events 267

Example 267
Breaking it down 268
Output 268

Multicasting 268
Example 269
Output 270

Combining observables 271
Zip() example 271
Output 272
The merge_all() operator 272
Output 273

Concurrency 273
Example 274
Output 275

PyFunctional 276

[xii]

Installation and official docs 276
Simple example 277

Output 277
Streams, transformations, and actions 277
Filtering lists 278

Output 279
Reading/writing SQLite3 279
Compressed files 280
Parallel execution 281

Summary 282

Chapter 11: Using the GPU 283

Introduction to GPUs 284
Why use the GPU? 285

Data science 285
Branches of data science 286

Machine learning 286
Classification 286
Cluster analysis 286
Data mining 287

CUDA 288
Working with CUDA without a NVIDIA graphics card 289

PyCUDA 289
Features 290
Simple example 290
Kernels 291
GPU arrays 292

Numba 292
Overview 293
Features of Numba 293

LLVM 293
Cross-hardware compatibility 294

Python compilation space 294
Just-in-Time (JiT) versus Ahead-of-Time (Aot) compilation 295
The Numba process 295
Anaconda 296
Writing basic Numba Python programs 296
Compilation options 297

nopython 297
nogil 297
The cache option 298
The parallel option 298

Issues with Numba 298

[xiii]

Numba on the CUDA-based GPUs 299
Numba on AMD APUs 299

Accelerate 300
Theano 301

Requirements 301
Getting started 301

Very simple example 302
Adding two matrices 302
Fully-typed constructors 303

Using Theano on the GPU 303
Example 304

Leveraging multiple GPUs 305
Defining the context map 306
Simple graph example 306

PyOpenCL 307
Example 307

Output 308
Summary 309

Chapter 12: Choosing a Solution 310

Libraries not covered in this book 310
GPU 311

PyGPU 311
Event-driven and reactive libraries 311

Tornado 311
Flask 312
Celery 313

Data science 313
Pandas 313
Matplotlib 314
TensorFlow 314

Designing your systems 314
Requirements 315

Functional requirements 315
Non-functional requirements 315

Design 316
Computationally expensive 316
Event-heavy applications 317
I/O-heavy applications 317

Recommended design books 317
Software Architecture with Python 318
Python: Master the Art of Design Patterns 318

Research 318
Summary 318

[xiv]

Index 320

Preface
Python is a very high-level, general-purpose language that features a large number of
powerful high-level and low-level libraries and frameworks that complement its delightful
syntax. This easy-to-follow guide teaches you new practices and techniques to optimize
your code and then moves on to more advanced ways to effectively write efficient Python
code. Small and simple practical examples will help you test the concepts introduced, and
you will be able to easily adapt them to any application.

Throughout this book, you will learn to build highly efficient, robust, and concurrent
applications. You will work through practical examples that will help you address the
challenges of writing concurrent code, and also you will learn to improve the overall speed
of execution in multiprocessor and multicore systems and keep them highly available.

What this book covers
, Speed It Up!, helps you get to grips with threads and processes, and you'll also

learn about some of the limitations and challenges of Python when it comes to
implementing your own concurrent applications.

, Parallelize It, covers a multitude of topics including the differences between
concurrency and parallelism. We will look at how they both leverage the CPU in different
ways, and we also branch off into the topic of computer system design and how it relates to
concurrent and parallel programming.

, Life of a Thread, delves deeply into the workings of Python's native threading
library. We'll look at the numerous different thread types. We'll also look in detail at
various concepts such as the multithreading model and the numerous ways in which we
can make user threads to their lower-level siblings, the kernel threads.

, Synchronization between Threads, covers the various key issues that can impact
our concurrent Python applications. We will delve into the topic of deadlocks and the
famous "dining philosophers" problem and see how this can impact our own software.

, Communication between Threads, discusses quite a number of different
mechanisms that we can employ to implement communication in our multithreaded
systems. We delve into the thread-safe queue primitives that Python features natively.

Preface

[2]

, Debug and Benchmark, takes a comprehensive look at some of the techniques that
you can utilize in order to ensure your concurrent Python systems are as free as practically
possible from bugs before they plague your production environment. We will also cover
testing strategies that help to ensure the soundness of your code's logic.

, Executors and Pools, covers everything that you need to get started with thread
pools, process pools, and future objects. We will look at the various ways in which you can
instantiate your own thread and process pools as well the advantages of using thread and
process pool executors over traditional methods.

, Multiprocessing, discusses multiprocessing and how it can be utilized within our
systems. We will follow the life of a process from its creation all the way through to its
timely termination.

, Event-Driven Programming, covers the paradigm of event-driven programming
before covering how asyncio works and how we can use it for our own event-driven Python
systems.

, Reactive Programming, covers some of the key principles of reactive
programming. We will look at the key differences between both reactive programming and
typical event-driven programming and delve more deeply into the specifics of the very
popular RxPY Python library.

, Using the GPU, covers some of the more realistic scenarios that data scientists
typically encounter and why these are ideal scenarios for us to leverage the GPU wrapper
libraries.

, Choosing a Solution, briefly discusses some libraries that are not covered in this
book. We'll also take a look at the process that you should follow in order to effectively
choose which libraries and programming paradigms you leverage for your Python software
projects.

What you need for this book
For this book, you will need the following software installed on your systems:

Beautiful Soup
RxPy
Anaconda
Theano
PyOpenCL

Preface

[3]

Who this book is for
This book is for Python developers who would like to get started with concurrent
programming. You are expected to have a working knowledge of the Python language, as
this book will build on its fundamental concepts.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the directive."

A block of code is set as follows:

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

req = urllib.request.urlopen('http://www.example.com')

Any command-line input or output is written as follows:

pip install rx

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text.

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail

, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you. You can download the

code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Preface

[5]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from our

rich catalog of books and videos available at .
Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to

and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.

11
Speed It Up!

"For over a decade prophets have voiced the contention that the organization of a single
computer has reached its limits and that truly significant advances can be made only by
interconnection of a multiplicity of computers."

-Gene Amdahl.

Getting the most out of your software is something all developers strive for, and
concurrency, and the art of concurrent programming, happens to be one of the best ways in
order for you to improve the performance of your applications. Through the careful
application of concurrent concepts into our previously single-threaded applications, we can
start to realize the full power of our underlying hardware, and strive to solve problems that
were unsolvable in days gone past.

With concurrency, we are able to improve the perceived performance of our applications by
concurrently dealing with requests, and updating the frontend instead of just hanging until
the backend task is complete. Gone are the days of unresponsive programs that give you no
indication as to whether they’ve crashed or are still silently working.

This improvement in the performance of our applications comes at a heavy price though. By
choosing to implement systems in a concurrent fashion, we typically see an increase in the
overall complexity of our code, and a heightened risk for bugs to appear within this new
code. In order to successfully implement concurrent systems, we must first understand
some of the key concurrency primitives and concepts at a deeper level in order to ensure
that our applications are safe from these new inherent threats.

Speed It Up!

[7]

In this chapter, I’ll be covering some of the fundamental topics that every programmer
needs to know before going on to develop concurrent software systems. This includes the
following:

A brief history of concurrency
Threads and how multithreading works
Processes and multiprocessing
The basics of event-driven, reactive, and GPU-based programming
A few examples to demonstrate the power of concurrency in simple programs
The limitations of Python when it comes to programming concurrent systems

History of concurrency
Concurrency was actually derived from early work on railroads and telegraphy, which is
why names such as semaphore are currently employed. Essentially, there was a need to
handle multiple trains on the same railroad system in such a way that every train would
safely get to their destinations without incurring casualties.

It was only in the 1960s that academia picked up interest in concurrent computing, and it
was Edsger W. Dijkstra who is credited with having published the first paper in this field,
where he identified and solved the mutual exclusion problem. Dijkstra then went on to
define fundamental concurrency concepts, such as semaphores, mutual exclusions, and
deadlocks as well as the famous Dijkstra’s Shortest Path Algorithm.

Concurrency, as with most areas in computer science, is still an incredibly young field when
compared to other fields of study such as math, and it’s worthwhile keeping this in mind.
There is still a huge potential for change within the field, and it remains an exciting field for
all--academics, language designers, and developers--alike.

The introduction of high-level concurrency primitives and better native language support
have really improved the way in which we, as software architects, implement concurrent
solutions. For years, this was incredibly difficult to do, but with this advent of new
concurrent APIs, and maturing frameworks and languages, it’s starting to become a lot
easier for us as developers.

Speed It Up!

[8]

Language designers face quite a substantial challenge when trying to implement
concurrency that is not only safe, but efficient and easy to write for the users of that
language. Programming languages such as Google’s Golang, Rust, and even Python itself
have made great strides in this area, and this is making it far easier to extract the full
potential from the machines your programs run on.

Threads and multithreading
In this section of the book, we'll take a brief look at what a thread is, as well as at how we
can use multiple threads in order to speed up the execution of some of our programs.

What is a thread?
A thread can be defined as an ordered stream of instructions that can be scheduled to run as
such by operating systems. These threads, typically, live within processes, and consist of a
program counter, a stack, and a set of registers as well as an identifier. These threads are the
smallest unit of execution to which a processor can allocate time.

Threads are able to interact with shared resources, and communication is possible between
multiple threads. They are also able to share memory, and read and write different memory
addresses, but therein lies an issue. When two threads start sharing memory, and you have
no way to guarantee the order of a thread’s execution, you could start seeing issues or
minor bugs that give you the wrong values or crash your system altogether. These issues
are, primarily, caused by race conditions which we’ll be going, in more depth in ,
Synchronization Between Threads.

The following figure shows how multiple threads can exist on multiple different CPUs:

Speed It Up!

[9]

Types of threads
Within a typical operating system, we, typically, have two distinct types of threads:

User-level threads: Threads that we can actively create, run, and kill for all of our
various tasks
Kernel-level threads: Very low-level threads acting on behalf of the operating
system

Python works at the user-level, and thus, everything we cover in this book will be,
primarily, focused on these user-level threads.

What is multithreading?
When people talk about multithreaded processors, they are typically referring to a
processor that can run multiple threads simultaneously, which they are able to do by
utilizing a single core that is able to very quickly switch context between multiple threads.
This switching context takes place in such a small amount of time that we could be forgiven
for thinking that multiple threads are running in parallel when, in fact, they are not.

When trying to understand multithreading, it’s best if you think of a multithreaded
program as an office. In a single-threaded program, there would only be one person
working in this office at all times, handling all of the work in a sequential manner. This
would become an issue if we consider what happens when this solitary worker becomes
bogged down with administrative paperwork, and is unable to move on to different work.
They would be unable to cope, and wouldn’t be able to deal with new incoming sales, thus
costing our metaphorical business money.

With multithreading, our single solitary worker becomes an excellent multitasker, and is
able to work on multiple things at different times. They can make progress on some
paperwork, and then switch context to a new task when something starts preventing them
from doing further work on said paperwork. By being able to switch context when
something is blocking them, they are able to do far more work in a shorter period of time,
and thus make our business more money.

Speed It Up!

[10]

In this example, it’s important to note that we are still limited to only one worker or
processing core. If we wanted to try and improve the amount of work that the business
could do and complete work in parallel, then we would have to employ other workers or
processes as we would call them in Python.

Let's see a few advantages of threading:

Multiple threads are excellent for speeding up blocking I/O bound programs
They are lightweight in terms of memory footprint when compared to processes
Threads share resources, and thus communication between them is easier

There are some disadvantages too, which are as follows:

CPython threads are hamstrung by the limitations of the global interpreter lock
(GIL), about which we'll go into more depth in the next chapter.
While communication between threads may be easier, you must be very careful
not to implement code that is subject to race conditions
It's computationally expensive to switch context between multiple threads. By
adding multiple threads, you could see a degradation in your program's overall
performance.

Processes
Processes are very similar in nature to threads--they allow us to do pretty much everything
a thread can do--but the one key advantage is that they are not bound to a singular CPU
core. If we extend our office analogy further, this, essentially, means that if we had a four
core CPU, then we can hire two dedicated sales team members and two workers, and all
four of them would be able to execute work in parallel. Processes also happen to be capable
of working on multiple things at one time much as our multithreaded single office worker.

These processes contain one main primary thread, but can spawn multiple sub-threads that
each contain their own set of registers and a stack. They can become multithreaded should
you wish. All processes provide every resource that the computer needs in order to execute
a program.

Speed It Up!

[11]

In the following image, you'll see two side-by-side diagrams; both are examples of a
process. You'll notice that the process on the left contains only one thread, otherwise known
as the primary thread. The process on the right contains multiple threads, each with their
own set of registers and stacks:

With processes, we can improve the speed of our programs in specific scenarios where our
programs are CPU bound, and require more CPU horsepower. However, by spawning
multiple processes, we face new challenges with regard to cross-process communication,
and ensuring that we don’t hamper performance by spending too much time on this inter-
process communication (IPC).

Properties of processes
UNIX processes are created by the operating system, and typically contain the following:

Process ID, process group ID, user ID, and group ID
Environment
Working directory
Program instructions
Registers
Stack
Heap

Speed It Up!

[12]

File descriptors
Signal actions
Shared libraries
Inter-process communication tools (such as message queues, pipes, semaphores,
or shared memory)

The advantages of processes are listed as follows:

Processes can make better use of multi-core processors
They are better than multiple threads at handling CPU-intensive tasks
We can sidestep the limitations of the GIL by spawning multiple processes
Crashing processes will not kill our entire program

Here are the disadvantages of processes:

No shared resources between processes--we have to implement some form of IPC
These require more memory

Multiprocessing
In Python, we can choose to run our code using either multiple threads or multiple
processes should we wish to try and improve the performance over a standard single-
threaded approach. We can go with a multithreaded approach and be limited to the
processing power of one CPU core, or conversely we can go with a multiprocessing
approach and utilize the full number of CPU cores available on our machine. In today’s
modern computers, we tend to have numerous CPUs and cores, so limiting ourselves to just
the one, effectively renders the rest of our machine idle. Our goal is to try and extract the
full potential from our hardware, and ensure that we get the best value for money and solve
our problems faster than anyone else:

Speed It Up!

[13]

With Python’s multiprocessing module, we can effectively utilize the full number of cores
and CPUs, which can help us to achieve greater performance when it comes to CPU-
bounded problems. The preceding figure shows an example of how one CPU core starts
delegating tasks to other cores.

In all Python versions less than or equal to 2.6, we can attain the number of CPU cores
available to us by using the following code snippet:

Not only does multiprocessing enable us to utilize more of our machine, but we also avoid
the limitations that the Global Interpreter Lock imposes on us in CPython.

One potential disadvantage of multiple processes is that we inherently have no shared state,
and lack communication. We, therefore, have to pass it through some form of IPC, and
performance can take a hit. However, this lack of shared state can make them easier to work
with, as you do not have to fight against potential race conditions in your code.

Event-driven programming
Event-driven programming is a huge part of our lives--we see examples of it every day
when we open up our phone, or work on our computer. These devices run purely in an
event-driven way; for example, when you click on an icon on your desktop, the operating
system registers this as an event, and then performs the necessary action tied to that specific
style of event.

Every interaction we do can be characterized as an event or a series of events, and these
typically trigger callbacks. If you have any prior experience with JavaScript, then you
should be somewhat familiar with this concept of callbacks and the callback design pattern.
In JavaScript, the predominant use case for callbacks is when you perform RESTful HTTP
requests, and want to be able to perform an action when you know that this action has
successfully completed and we’ve received our HTTP response:

Speed It Up!

[14]

If we look at the previous image, it shows us an example of how event-driven programs
process events. We have our EventEmitters on the left-hand side; these fire off multiple
Events, which are picked up by our program's Event Loop, and, should they match a
predefined Event Handler, that handler is then fired to deal with the said event.

Callbacks are often used in scenarios where an action is asynchronous. Say, for instance,
you applied for a job at Google, you would give them an email address, and they would
then get in touch with you when they make their mind up. This is, essentially, the same as
registering a callback except that, instead of having them email you, you would execute an
arbitrary bit of code whenever the callback is invoked.

Turtle
Turtle is a graphics module that has been written in Python, and is an incredible starting
point for getting kids interested in programming. It handles all the complexities that come
with graphics programming, and lets them focus purely on learning the very basics whilst
keeping them interested.

It is also a very good tool to use in order to demonstrate event-driven programs. It features
event handlers and listeners, which is all that we need:

Speed It Up!

[15]

Breaking it down
In the first line of this preceding code sample, we import the turtle graphics module. We
then go up to set up a basic turtle window with the title Event Handling 101 and a
background color of light blue.

After we’ve got the initial setup out of the way, we then go on to define three distinct event
handlers:

: This is for when we want to move our character forward by 50
units

/ : This is for when we want to rotate our character in either
direction by 30 degrees

Speed It Up!

[16]

Once we’ve defined our three distinct handlers, we then go on to map these event handlers
to the up, left, and right key presses using the method.

Now that we’ve set up our handlers, we then tell them to start listening. If any of the keys
are pressed after our program has started listening, then we will fire its event handler
function. Finally, when you run the preceding code, you should see a window appear with
an arrow in the center, which you can move about with your arrow keys.

Reactive programming
Reactive programming is very similar to that of event-driven, but instead of revolving
around events, it focuses on data. More specifically, it deals with streams of data, and reacts
to specific data changes.

ReactiveX - RxPy
RxPy is the Python equivalent of the very popular ReactiveX framework. If you’ve ever
done any programming in Angular 2 and proceeding versions, then you will have used this
when interacting with HTTP services. This framework is a conglomeration of the observer
pattern, the iterator pattern, and functional programming. We essentially subscribe to
different streams of incoming data, and then create observers that listen for specific events
being triggered. When these observers are triggered, they run the code that corresponds to
what has just happened.

Speed It Up!

[17]

We'll take a data center as a good example of how reactive programming can be utilized.
Imagine this data center has thousands of server racks, all constantly computing millions
upon millions of calculations. One of the biggest challenges in these data centers is keeping
all these tightly packed server racks cool enough so that they don’t damage themselves. We
could set up multiple thermometers throughout our data center to ensure that we aren’t
getting too hot anywhere, and send the readings from these thermometers to a central
computer as a continuous stream:

Within our central control station, we could set up a RxPy program that observes this
continuous stream of temperature information. Within these observers, we could then
define a series of conditional events to listen out for, and then react whenever one of these
conditionals is hit.

One such example would be an event that only triggers if the temperature for a specific part
of the data center gets too warm. When this event is triggered, we could then automatically
react and increase the flow of any cooling system to that particular area, and thus bring the
temperature back down again:

Speed It Up!

[18]

Breaking it down
The first two lines of our code import the necessary module, and then from there import
both observable and observer.

We then go on to create a class that extends the observer. This class
contains three functions:

: This is called every time our observer observes something new
: This acts as our error-handler function; every time we observe an

error, this function will be called
: This is called when our observer meets the end of the stream of

information it has been observing

In the function, we want it to print out the current temperature, and also to check
whether the temperature that it receives is under a set of limits. If the temperature matches
one of our conditionals, then we handle it slightly differently, and print out descriptive
errors as to what has happened.

After our class declaration, we go on to create a fake observable which contains 10 separate
values using , and finally, the last line of our preceding
code then subscribes an instance of our new class to this
observable.

Speed It Up!

[19]

GPU programming
GPUs are renowned for their ability to render high resolution, fast action video games. They
are able to crunch together the millions of necessary calculations per second in order to
ensure that every vertex of your game's 3D models are in the right place, and that they are
updated every few milliseconds in order to ensure a smooth 60 FPS.

Generally speaking, GPUs are incredibly good at performing the same task in parallel,
millions upon millions of times per minute. But if GPUs are so performant, then why do we
not employ them instead of our CPUs? While GPUs may be incredibly performant at
graphics processing, they aren't however designed for handling the intricacies of running
an operating system and general purpose computing. CPUs have fewer cores, which are
specifically designed for speed when it comes to switching context between operating tasks.
If GPUs were given the same tasks, you would see a considerable degradation in your
computer's overall performance.

But how can we utilize these high-powered graphics cards for something other than
graphical programming? This is where libraries such as PyCUDA, OpenCL, and Theano
come into play. These libraries try to abstract away the complicated low-level code that
graphics APIs have to interact with in order to utilize the GPU. They make it far simpler for
us to repurpose the thousands of smaller processing cores available on the GPU, and utilize
them for our computationally expensive programs:

Speed It Up!

[20]

These Graphics Processing Units (GPU) encapsulate everything that scripting languages
are not. They are highly parallelizable, and built for maximum throughput. By utilizing
these in Python, we are able to get the best of both worlds. We can utilize a language that is
favored by millions due to its ease of use, and also make our programs incredibly
performant.

In the following sections, we will have a look at the various libraries that are available to us,
which expose the power of the GPU.

PyCUDA
PyCUDA allows us to interact with Nvidia’s CUDA parallel computation API in Python. It
offers us a lot of different advantages over other frameworks that expose the same
underlying CUDA API. These advantages include things such as an impressive underlying
speed, complete control of the CUDA’s driver API, and most importantly, a lot of useful
documentation to help those just getting started with it.

Unfortunately however, the main limitation for PyCUDA is the fact that it utilizes Nvidia-
specific APIs, and as such, if you do not have a Nvidia-based graphics card, then you will
not be able to take advantage of it. However, there are other alternatives which do an
equally good job on other non-Nvidia graphics cards.

OpenCL
OpenCL is one such example of an alternative to PyCUDA, and, in fact, I would
recommend this over PyCUDA due to its impressive range of conformant implementations,
which does also include Nvidia. OpenCL was originally conceived by Apple, and allows us
to take advantage of a number of heterogeneous platforms such as CPUs, GPUs, digital
signal processors, field-programmable gate arrays, and other different types of processors
and hardware accelerators.

There currently exist third-party APIs for not only Python, but also Java and .NET, and it is
therefore ideal for researchers and those of us who wish to utilize the full power of our
desktop machines.

Speed It Up!

[21]

Theano
Theano is another example of a library that allows you to utilize the GPU as well as to
achieve speeds that rival C implementations when trying to solve problems that involve
huge quantities of data.

It’s a different style of programming, though, in the sense that Python is the medium in
which you craft expressions that can be passed into Theano.

The official website for Theano can be found here:

The limitations of Python
Earlier in the chapter, I talked about the limitations of the GIL or the Global Interpreter
Lock that is present within Python, but what does this actually mean?

First, I think it’s important to know exactly what the GIL does for us. The GIL is essentially
a mutual exclusion lock which prevents multiple threads from executing Python code in
parallel. It is a lock that can only be held by one thread at any one time, and if you wanted a
thread to execute its own code, then it would first have to acquire the lock before it could
proceed to execute its own code. The advantage that this gives us is that while it is locked,
nothing else can run at the same time:

In the preceding diagram, we see an example of how multiple threads are hampered by this
GIL. Each thread has to wait and acquire the GIL before it can progress further, and then
release the GIL, typically before it has had a chance to complete its work. It follows a
random round-robin approach, and you have no guarantees as to which thread will acquire
the lock first.

Speed It Up!

[22]

Why is this necessary, you might ask? Well, the GIL has been a long-disputed part of
Python, and over the years has triggered many a debate over its usefulness. But it was
implemented with good intentions and to combat the non-thread safe Python memory
management. It prevents us from taking advantage of multiprocessor systems in certain
scenarios.

Guido Van Rossum, the creator of Python, posted an update on the removal of the GIL and
its benefits in a post here:

. He states that he wouldn’t be against someone creating a branch of Python that is
GIL-less, and he would accept a merge of this code if, and only if, it didn’t negatively
impact the performance of a single-threaded application.

There have been prior attempts at getting rid of the GIL, but it was found that the addition
of all the extra locks to ensure thread-safety actually slowed down an application by a factor
of more then two. In other words, you would have been able to get more work done with a
single CPU than you would have with just over two CPUs. There are, however, libraries
such as NumPy that can do everything they need to without having to interact with the
GIL, and working purely outside of the GIL is something I’m going to be exploring in
greater depth in the future chapters of this book.

It must also be noted that there are other implementations of Python, such as Jython and
IronPython, that don’t feature any form of Global Interpreter Lock, and as such can fully
exploit multiprocessor systems. Jython and IronPython both run on different virtual
machines, so, they can take advantage of their respective runtime environments.

Jython
Jython is an implementation of Python that works directly with the Java platform. It can be
used in a complementary fashion with Java as a scripting language, and has been shown to
outperform CPython, which is the standard implementation of Python, when working with
some large datasets. For the majority of stuff though, CPython’s single-core execution
typically outperforms Jython and its multicore approach.

The advantage to using Jython is that you can do some pretty cool things with it when
working in Java, such as import existing Java libraries and frameworks, and use them as
though they were part of your Python code.

Speed It Up!

[23]

IronPython
IronPython is the .NET equivalent of Jython and works on top of Microsoft’s .NET
framework. Again, you’ll be able to use it in a complementary fashion with .NET
applications. This is somewhat beneficial for .NET developers, as they are able to use
Python as a fast and expressive scripting language within their .NET applications.

Why should we use Python?
If Python has such obvious, known limitations when it comes to writing performant,
concurrent applications, then why do we continue to use it? The short answer is that it’s a
fantastic language to get work done in, and by work, I’m not necessarily talking about
crunching through a computationally expensive task. It’s an intuitive language, which is
easy to pick up and understand for those who don’t necessarily have a lot of programming
experience.

The language has seen a huge adoption rate amongst data scientists and mathematicians
working in incredibly interesting fields such as machine learning and quantitative analysis,
who find it to be an incredibly useful tool in their arsenal.

In both the Python 2 and 3 ecosystems, you’ll find a huge number of libraries that are
designed specifically for these use cases, and by knowing about Python’s limitations, we
can effectively mitigate them, and produce software that is efficient and capable of doing
exactly what is required of it.

So now that we understand what threads and processes are, as well as some of the
limitations of Python, it’s time to have a look at just how we can utilize multi-threading
within our application in order to improve the speed of our programs.

Concurrent image download
One excellent example of the benefits of multithreading is, without a doubt, the use of
multiple threads to download multiple images or files. This is, actually, one of the best use
cases for multithreading due to the blocking nature of I/O.

To highlight the performance gains, we are going to retrieve 10 different images from
, which is a free API that delivers a different image

every time you hit that link. We’ll then store these 10 different images within a temp folder
so that we can view/use them later on.

Speed It Up!

[24]

All the code used in these examples can be found in my GitHub repository here:
.

Sequential download
First, we should have some form of a baseline against which we can measure the
performance gains. To do this, we’ll write a quick program that will download these 10
images sequentially, as follows:

Breaking it down
In the preceding code, we begin by importing . This will act as our
medium for performing HTTP requests for the images that we want. We then define a new
function called , which takes in two parameters, and

. represents the URL image path that we wish to download.
 represents the name of the file that we wish to use to save this image locally.

In the function, we then start up a loop. Within this loop, we generate an
 which includes the directory, a string representation of what iteration

we are currently at--str(i)--and the file extension . We then call the
function, passing in the location, which provides us with a random image as
well as our newly generated .

Upon running this script, you should see your directory sequentially fill up with 10
distinct images.

Speed It Up!

[25]

Concurrent download
Now that we have our baseline, it’s time to write a quick program that will concurrently
download all the images that we require. We’ll be going over creating and starting threads
in future chapters, so don’t worry if you struggle to understand the code. The key point of
this is to realize the potential performance gains to be had by writing programs
concurrently:

Speed It Up!

[26]

Breaking it down
In the first line of our newly modified program, you should see that we are now importing
the threading module; this will enable us to create our first multithreaded application. We
then abstract our filename generation, and call the function into our own

 function.

Within the function, we first create an empty array of threads, and then iterate 10
times, creating a new thread object, appending this to our array of threads, and then
starting that thread.

Finally, we iterate through our array of threads by calling for i in threads, and call the
method on each of these threads. This ensures that we do not proceed with the execution of
our remaining code until all of our threads have finished downloading the image.

If you execute this on your machine, you should see that it almost instantaneously starts the
download of the 10 different images. When the downloads finish, it again prints out that it
has successfully completed, and you should see the folder being populated with these
images.

Both the preceding scripts do exactly the same tasks using the exact same
library, but if you take a look at the total execution time, then you should see an order of
magnitude improvement on the time taken for the concurrent script to fetch all 10 images.

Improving number crunching with
multiprocessing
So, we’ve seen exactly how we can improve things such as downloading images, but how
do we improve the performance of our number crunching? Well, this is where
multiprocessing shines if used in the correct manner.

In this example, we’ll try to find the prime factors of 10,000 random numbers that fall
between 20,000 and 100,000,000. We are not necessarily fussed about the order of execution
so long as the work gets done, and we aren’t sharing memory between any of our processes.

Speed It Up!

[27]

Sequential prime factorization
Again, we’ll write a script that does this in a sequential manner, which we can easily verify
is working correctly:

Breaking it down
The first two lines make up our required imports--we’ll be needing both the time and the
random modules. After our imports, we then go on to define the
function, which takes an input of n. This efficiently calculates all of the prime factors of a
given number, and appends them to an array, which is then returned once that function
completes execution.

After this, we define the function, which calculates the starting time and then cycles
through 10,000 numbers, which are randomly generated by using random’s . We
then pass these generated numbers to the function, and we print
out the result. Finally, we calculate the end time of this loop and print it out.

Speed It Up!

[28]

If you execute this on your computer, you should see the array of prime factors being
printed out for 10,000 different random numbers, as well as the total execution time for this
code. For me, it took roughly 3.6 seconds to execute on my Macbook.

Concurrent prime factorization
So now let us have a look at how we can improve the performance of this program by
utilizing multiple processes.

In order for us to split this workload up, we’ll define an function, which,
instead of generating 10,000 random numbers to be factorized, will generate 1,000 random
numbers. We’ll create 10 processes, and execute the function 10 times, though, so the total
number of calculations should be the exact same as when we performed the sequential test:

Speed It Up!

[29]

Breaking it down
This last code performs the exact same function as our originally posted code. The first
change, however, is on line three. Here, we import the process from the multiprocessing
module. Our following, the method has not been touched.

You should then see that we pulled out the loop that initially ran for 10,000 iterations.
We now placed this in a function called , and we also reduced our loops
range to 1,000.

Within the function, we then create an empty array called . We then create 10
different processes, and set the target to be the function, and pass in no args.
We append this newly created process to our arrays, and then we start the process
by calling .

After we’ve created 10 individual processes, we then cycle through these processes which
are now in our array, and join them. This ensures that every process has finished its
calculations before we proceed to calculate the total execution time.

If you execute this now, you should see the 10,000 outputs now print out in your console,
and you should also see a far lower execution time when compared to your sequential
execution. For reference, the sequential program executed in 3.9 seconds on my computer
compared to 1.9 seconds when running the multiprocessing version.

This is just a very basic demonstration as to how we can implement multiprocessing into
our applications. In future chapters, we’ll explore how we can create pools and utilize
executors. The key point to take away from this is that we can improve the performance of
some CPU-bound tasks by utilizing multiple cores.

Speed It Up!

[30]

Summary
By now, you should have an appreciation of some of the fundamental concepts that
underlie concurrent programming. You should have a grasp of threads, processes, and
you’ll also know some of the limitations and challenges of Python when it comes to
implementing your own concurrent applications. Finally, you have also seen firsthand some
of the performance improvements that you can achieve if you were to add different types of
concurrency to your applications.

I should make it clear now that there is no silver bullet that you can apply to every
application and see consistent performance improvements. One style of concurrent
programming might work better than another depending on the requirements of your
application, so in the next few chapters, we’ll look at all the different mechanisms you can
employ and when to employ them.

In the next chapter, we'll have a more in-depth look at the concept of concurrency and
parallelism, as well as the differences between the two concepts. We'll also look at some of
the main bottlenecks that constrain our concurrent systems, and you'll learn the different
styles of computer system architecture, and how it can help us achieve greater performance.

22
Parallelize It

Concurrency and parallelism are two concepts that are commonly confused. The reality,
though, is that they are quite different, and if you designed software to be concurrent when
instead you needed parallel execution, then you could be seriously impacting your
software’s true performance potential.

Due to this, it’s vital to know exactly what the two concepts mean so that you can
understand the differences. Through knowing these differences, you’ll be putting yourself
at a distinct advantage when it comes to designing your own high performance software in
Python.

In this chapter, we’ll be covering the following topics:

What is concurrency and what are the major bottlenecks that impact our
applications
What is parallelism and how does this differ from concurrency
The different styles of computer system architecture and how we can utilize these
effectively, using either concurrency or parallelism
A brief overview of computer memory architecture

Parallelize It

[32]

Understanding concurrency
Concurrency is, essentially, the practice of doing multiple things at the same time, but not,
specifically, in parallel. It can help us to improve the perceived performance of our
applications, and it can also improve the speed at which our applications run.

The best way to think of how concurrency works is to imagine one person working on
multiple tasks and quickly switching between these tasks. Imagine this one person working
concurrently on a program, and, at the same time, dealing with support requests. This
person would focus primarily on the writing of their program, and quickly context switch
to fixing a bug or dealing with a support issue should there be one. Once they complete the
support task, they could switch context again, back to writing their program really quickly.

However, in computing, there are typically two performance bottlenecks that we have to
watch out for and guard against when writing our programs. It’s important to know the
differences between the two bottlenecks, as if you try to apply concurrency to a CPU-based
bottleneck, then you would find that the program actually starts to see a decrease in
performance as opposed to an increase. And if you tried to apply parallelism to a task that
really requires a concurrent solution, then you could again see the same performance hits.

Properties of concurrent systems
All concurrent systems share a similar set of properties; these can be defined as follows:

Multiple actors: This represents the different processes and threads all trying to
actively make progress on their own tasks. We could have multiple processes that
contain multiple threads all trying to run at the same time.
Shared resources: This feature represents the memory, disk, and other resources
that the actors in the preceding group must utilize in order to perform what they
need to do.
Rules: These are a strict set of rules that all concurrent systems must follow, and
which define when actors can and can’t acquire locks, access memory, modify
state, and so on. These rules are vital in order for these concurrent systems to
work, otherwise, our programs would tear themselves apart.

Parallelize It

[33]

I/O bottlenecks
I/O bottlenecks, or I/O bottlenecks for short, are bottlenecks where your computer spends
more time waiting on various inputs and outputs than it does on processing the
information.

You’ll typically find this type of bottleneck when you are working with an I/O heavy
application. We could take your standard web browser as an example of a heavy I/O
application. In a browser, we typically spend a significantly longer amount of time waiting
for network requests to finish for things such as style sheets, scripts, or HTML pages to load
as opposed to rendering this on the screen.

If the rate at which data is requested is slower than the rate at which it is consumed, then
you have an I/O bottleneck.

One of the main ways to improve the speed of these applications is to either improve the
speed of the underlying I/O by buying more expensive and faster hardware, or to improve
the way in which we handle these I/O requests.

A great example of a program bound by I/O bottlenecks would be a web crawler. Now the
main purpose of a web crawler is to traverse the web, and essentially index web pages so
that they can be taken into consideration when Google runs its search ranking algorithm to
decide the top 10 results for a given keyword.

We’ll start by creating a very simple script that just requests a page and times how long it
takes to request said web page, as follows:

If we break down this code, first we import the two necessary modules,
and the module. We then record the starting time and request the web page,

, and then record the ending time and print out the time difference.

Parallelize It

[34]

Now, say we wanted to add a bit of complexity and follow any links to other pages so that
we could index them in the future. We could use a library such as in order
to make our lives a little easier, as follows:

When I execute the preceding program, I see the results like so on my terminal:

You’ll notice from this output that the time to fetch the page is over a quarter of a second.
Now imagine if we wanted to run our web crawler for a million different web pages, our
total execution time would be roughly a million times longer.

The real main cause for this enormous execution time would purely boil down to the I/O
bottleneck we face in our program. We spend a massive amount of time waiting on our
network requests, and a fraction of that time parsing our retrieved page for further links to
crawl.

Parallelize It

[35]

Understanding parallelism
In the first chapter, we covered a bit about Python’s multiprocessing capabilities, and how
we could use this to take advantage of more of the processing cores in our hardware. But
what do we mean when we say that our programs are running in parallel?

Parallelism is the art of executing two or more actions simultaneously as opposed to
concurrency in which you make progress on two or more things at the same time. This is an
important distinction, and in order to achieve true parallelism, we’ll need multiple
processors on which to run our code at the same time.

A good analogy for parallel processing is to think of a queue for Coke. If you have, say, two
queues of 20 people, all waiting to use a coke machine so that they can get through the rest
of the day with a bit of a sugar rush, well, this would be an example of concurrency. Now
say you were to introduce a second coke machine into the mix--this would then be an
example of something happening in parallel. This is exactly how parallel processing works--
each of the coke machines in that room represents one processing core, and is able to make
progress on tasks simultaneously:

Parallelize It

[36]

A real-life example that highlights the true power of parallel processing is your computer’s
graphics card. These graphics cards tend to have hundreds, if not thousands, of individual
processing cores that live independently, and can compute things at the same time. The
reason we are able to run high-end PC games at such smooth frame rates is due to the fact
we’ve been able to put so many parallel cores onto these cards.

CPU-bound bottlenecks
A CPU-bound bottleneck is, typically, the inverse of an I/O-bound bottleneck. This
bottleneck is found in applications that do a lot of heavy number crunching, or any other
task that is computationally expensive. These are programs for which the rate at which they
execute is bound by the speed of the CPU--if you throw a faster CPU in your machine you
should see a direct increase in the speed of these programs.

If the rate at which you are processing data far outweighs the rate at which
you are requesting data, then you have a CPU-bound bottleneck.

In , Speed It Up!, we had a quick look at how to combat a CPU-bound program
when we tried to compute the prime factors of 10,000 large random numbers, a problem
that relies heavily on the CPU. We then implemented this same prime factorization
program in a way that enabled us to utilize more of our CPU, and thus, directly improve
the speed at which the program executed.

How do they work on a CPU?
Understanding the differences outlined in the previous section between both concurrency
and parallelism is essential, but it’s also very important to understand more about the
systems that your software will be running on. Having an appreciation of the different
architecture styles as well as the low-level mechanics helps you make the most informed
decisions in your software design.

Parallelize It

[37]

Single-core CPUs
Single-core processors will only ever execute one thread at any given time as that is all they
are capable of. However, in order to ensure that we don’t see our applications hanging and
being unresponsive, these processors rapidly switch between multiple threads of execution
many thousands of times per second. This switching between threads is what is called a
"context switch," and involves storing all the necessary information for a thread at a specific
point in time, and then restoring it at a different point further down the line.

Using this mechanism of constantly saving and restoring threads allows us to make
progress on quite a number of threads within a given second, and it appears like the
computer is doing multiple things at once. It is, in fact, doing only one thing at any given
time, but doing it at such speed that it’s imperceptible to the users of that machine.

When writing multithreaded applications in Python, it is important to note that these
context switches are, computationally, quite expensive. There is no way to get around this,
unfortunately, and much of the design of operating systems these days is about optimizing
for these context switches so that we don’t feel the pain quite as much.

The following are the advantages of single-core CPUs:

They do not require any complex communication protocols between multiple
cores
Single-core CPUs require less power, which makes them better suited for IoT
devices

Single-core CPUs, however, have these disadvantages:

They are limited in speed, and larger applications cause them to struggle and
potentially freeze
Heat dissipation issues place a hard limit on how fast a single-core CPU can go

Clock rate
One of the key limitations to a single-core application running on a machine is the clock
speed of the CPU. When we talk about clock rate, we are essentially talking about how
many clock cycles a CPU can execute every second.

Parallelize It

[38]

For the past 10 years, we have watched as manufacturers managed to surpass Moore’s law,
which was essentially an observation that the number of transistors one was able to place
on a piece of silicon doubled roughly every two years.

This doubling of transistors every two years paved the way for exponential gains in single-
CPU clock rates, and CPUs went from the low MHz to the 4-5 GHz clock speeds that we
now see on Intel’s i7 6700k processor.

But with transistors getting as small as a few nanometers across, this is inevitably coming to
an end. We’ve started to hit the boundaries of physics, and, unfortunately, if we go any
smaller, we’ll start being hit by the effects of quantum tunneling. Due to these physical
limitations, we need to start looking at other methods in order to improve the speeds at
which we are able to compute things.

This is where Materlli’s Model of Scalability comes into play.

Martelli model of scalability
The author of Python Cookbook, Alex Martelli, came up with a model on scalability, which
Raymond Hettinger discussed in his brilliant hour-long talk on "Thinking about
Concurrency" that he gave at PyCon Russia 2016. This model represents three different
types of problems and programs:

1 core: This refers to single-threaded and single process programs
2-8 cores: This refers to multithreaded and multiprocessing programs
9+ cores: This refers to distributed computing

The first category, the single core, single-threaded category, is able to handle a growing
number of problems due to the constant improvements in the speed of single-core CPUs,
and as a result, the second category is being rendered more and more obsolete. We will
eventually hit a limit with the speed at which a 2-8 core system can run at, and then we’ll
have to start looking at other methods, such as multiple CPU systems or even distributed
computing.

If your problem is worth solving quickly, and it requires a lot of power, then the sensible
approach is to go with the distributed computing category and spin up multiple machines
and multiple instances of your program in order to tackle your problems in a truly parallel
manner. Large enterprise systems that handle hundreds of millions of requests are the main
inhabitants of this category. You’ll typically find that these enterprise systems are deployed
on tens, if not hundreds, of high performance, incredibly powerful servers in various
locations across the world.

Parallelize It

[39]

Time-sharing - the task scheduler
One of the most important parts of the operating system is the task scheduler. This acts as
the maestro of the orchestra, and directs everything with impeccable precision and
incredible timing and discipline. This maestro has only one real goal, and that is to ensure
that every task has a chance to run through till completion; the when and where of a task’s
execution, however, is non-deterministic. That is to say, if we gave a task scheduler two
identical competing processes one after the other, there is no guarantee that the first process
will complete first. This non-deterministic nature is what makes concurrent programming
so challenging.

An excellent example that highlights this non-deterministic behavior is the following code:

Parallelize It

[40]

Here in the preceding code, we have two competing threads in Python that are each trying
to accomplish their own goal of either decrementing the counter to , or conversely
incrementing it to . In a single-core processor, there is the possibility that worker A
manages to complete its task before worker B has a chance to execute, and the same can be
said for worker B. However, there is a third potential possibility, and that is that the task
scheduler continues to switch between worker A and worker B an infinite number of times
and never completes.

The preceding code, incidentally, also shows one of the dangers of multiple threads
accessing shared resources without any form of synchronization. There is no accurate way
to determine what will happen to our counter, and as such, our program could be
considered unreliable.

Multi-core processors
We’ve now got some idea as to how single-core processors work, but now it’s time to take a
look at multi-core processors. Multi-core processors contain multiple independent
processing units or “cores”. Each core contains everything it needs in order to execute a
sequence of stored instructions. These cores each follow their own cycle, which consists of
the following processes:

Fetch: This step involves fetching instructions from the program memory. This is
dictated by a program counter (PC), which identifies the location of the next step
to execute.
Decode: The core converts the instruction that it has just fetched, and converts it
into a series of signals that will trigger various other parts of the CPU.
Execute: Finally, we perform the execute step. This is where we run the
instruction that we have just fetched and decoded, and the results of this
execution are then stored in a CPU register.

Having multiple cores offers us the advantage of being able to work independently on
multiple cycles. This style of architecture enables us to
create higher performance programs that leverage this parallel execution.

Parallelize It

[41]

The following are the advantages of multi-core processors:

We are no longer bound by the same performance limitations that a single-core
processor is bound to
Applications that are able to take advantage of multiple cores will tend to run
faster if well designed

However, these are the disadvantages of multi-core processors:

They require more power than your typical single-core processor
Cross-core communication is no simple feat; we have multiple different ways of
doing this, about which I will go into more detail later in this chapter

System architecture styles
When designing your programs, it’s important to note that there are a number of different
memory architecture styles that suit the needs of a range of different use cases. One style of
memory architecture could be excellent for parallel computing tasks and scientific
computing, but somewhat cumbersome when it comes to your standard home-computing
tasks.

When we categorize these different styles, we tend to follow a taxonomy first proposed by a
man named Michael Flynn in 1972. This taxonomy defines four different styles of computer
architecture. These are:

SISD: single instruction stream, single data stream
SIMD: single instruction stream, multiple data stream
MISD: multiple instruction stream, single data stream
MIMD: multiple instruction stream, multiple data stream

We will look in more detail at these architectures in the following sections.

SISD
Single Instruction streams, Single Data streams tend to be your uniprocessor systems. These
systems have one sequential stream of data coming into them, and one single processing
unit that is used to execute this stream.

Parallelize It

[42]

This style of architecture typically represents your classical Von Neumann machines, and
for a vast number of years, before multi-core processors became popular, this represented
your typical home computer. You would have a single processor that handled everything
you required. These would, however, be incapable of things such as instruction parallelism
and data parallelism, and things such as graphics processing were incredibly taxing on
these systems.

The following figure shows an overview of how a uniprocessor system looks. It features one
data source that is processed by a single processing unit:

This style of architecture features all of the advantages and disadvantages that we outlined
earlier in the chapter when we covered single-core processors.

An example of a uniprocessor could be the Intel Pentium 4.

SIMD
SIMD (single instruction stream, multiple data streams) archtecture, multiple data
streams architecture is best suited to working with systems that process a lot of multimedia.
These are ideal for doing things such as 3D graphics due to the way in which they can
manipulate vectors. For instance, say you had two distinct arrays, and

. In an SIMD architecture, you are able to add these in one operation to
get . If we were to do this on scalar architecture, we would have to perform
four distinct add operations, as shown in the following figure:

Parallelize It

[43]

The best example of this style of architecture can be found within your graphics processing
unit. In OpenGL graphics programming, you have objects called Vertex Array Objects or
VAOs, and these VAOs typically contain multiple Vertex Buffer Objects that describe any
given object in a game. If someone was to, say, move their character, every element
within every Vertex Buffer object would have to be recalculated incredibly quickly in order
to allow us to see the character move smoothly across our screens.

This is where the power of SIMD architecture really shines. We pass all of our elements into
distinct VAOs. Once these VAOs have been populated, we can then tell it that we want to
multiply everything within this VAO with a rotation matrix. This then very quickly
proceeds to perform the same action on every element far more efficiently than a non-vector
architecture ever could.
The next diagram shows a high-level overview of an SIMD architecture. We have multiple
data streams, which could represent multiple vectors, and a number of processing units, all
able to act on a single instruction at any given time. Graphics cards typically have hundreds
of individual processing units:

Parallelize It

[44]

The main advantages of SIMD are as follows:

We are able to perform the same operation on multiple elements using one
instruction
As the number of cores on modern graphics cards increases, so too will the
throughput of these cards, thanks to this architecture

We’ll be utilizing the full advantages of this style of architecture in , Using the
GPU.

MISD
Multiple instruction streams, single data streams or MISD is a somewhat unloved style of
architecture with no real examples currently available commercially. It’s typically quite
hard to find a use case in which an MISD architecture style is appropriate, and would lend
itself well to a problem.

No real examples of an MISD architecture are available commercially today.

MIMD
Multiple instruction streams, multiple data streams is the most diverse taxonomy, and
encapsulates all modern day multi-core processors. Each of the cores that make up these
processors are capable of running independently and in parallel. In contrast to our SIMD
machines, MIMD-based machines are able to run a number of distinct operations on
multiple datasets in parallel as opposed to a single operation on multiple datasets.

The next diagram shows an example of a number of different processing units, all with a
number of different input data streams all acting independently:

Parallelize It

[45]

A normal multiprocessor typically uses MIMD architecture.

Computer memory architecture styles
When we start to speed up our programs by introducing concepts such as concurrency and
parallelism, we start to face new challenges that must be thought about and addressed
appropriately. One of the biggest challenges we start to face is the speed at which we can
access data. It’s important to note at this stage that if we cannot access data fast enough,
then this becomes a bottleneck for our programs, and no matter how expertly we design our
systems, we’ll never see any performance gains.

Computer designers have been increasingly looking for ways to improve the ease with
which we can develop new parallel solutions to problems. One of the ways they have
managed to improve things is by providing a single physical address space that all of our
multiple cores can access within a processor. This removes a certain amount of complexity
away from us, as programmers, and allows us to instead focus on ensuring that our code is
thread safe.

There are a number of these different styles of architecture used in a wide range of different
scenarios. The main two different architectural styles employed by system designers tend to
be those that follow a Uniform Memory Access pattern or a Non-uniform memory access
pattern, or UMA and NUMA respectively.

UMA
UMA (Uniform Memory Access) is an architecture style that features a shared memory
space that can be utilized in a uniform manner by any number of processing cores. In
layman’s terms this means that regardless of where that core resides, it will be able to
directly access a memory location in the same time no matter how close the memory is. This
style of architecture is also known as Symmetric Shared-Memory Multiprocessors or SMP in
short.

Parallelize It

[46]

The following image depicts how a UMA-style system would piece together. Each
processor interfaces with a bus, which performs all of the memory accessing. Each
processor added to this system increases the strain on the bus bandwidth, and thus we
aren't able to scale it in quite the same way we could if we were to use a NUMA
architecture:

The advantages of UMA are as follows:

All RAM access takes the exact same amount of time
Cache is coherent and consistent
Hardware design is simpler

However, there is one disadvantage of UMA:

UMA systems feature one memory bus from which all systems access memory;
unfortunately, this presents scaling problems

NUMA
NUMA (Non-uniform Memory Access) is an architecture style in which some memory
access may be faster than others depending on which processor requested it--this could be
due to the location of the processor with respect to the memory.

Parallelize It

[47]

Show next is a diagram that shows exactly how a number of processors interconnect in
NUMA style. Each has their own cache, access to the main memory, and independent I/O,
and each is connected to the interconnection network:

There is one major advantage of NUMA:

NUMA machines are more scalable than their uniform-memory access
counterparts

The following are the disadvantages of NUMA:

Non-deterministic memory access times can lead to either really quick access
times if memory is local, or far longer times if memory is in distant memory
locations
Processors must observe the changes made by other processors; the amount of
time it takes to observe increases in relation to how many processors are part of it

Parallelize It

[48]

Summary
In this chapter, we covered a multitude of topics including the differences between
concurrency and parallelism. We looked at how they both leverage the CPU in different
ways, and we also branched off into the topic of computer system design and how it relates
to concurrent and parallel programming.

By now you should have an appreciation for the two main types of bottlenecks afflicting
most software, and also have some idea as to how to combat this. You'll also have an
appreciation for some of the different styles of system architecture used, and how we can
leverage these different architectures in software design.

In the next chapter, we’ll expand more on the life cycle of a thread, and how it lives on your
machine.

33
Life of a Thread

In the previous chapter, we looked in depth at the concepts of concurrency and parallelism
as well as some of the key issues we face in multithreaded Python applications. Now it's
time to look at how we can start working with threads and manipulate them to our will.

In this chapter, we'll be diving into the life of a thread. We'll cover various topics such as:

The different states a thread can be in
Different types of threads - Windows vs POSIX
The best practices when it comes to starting your own threads
How we can make our lives easier when it comes to working with loads of
threads
Finally, we'll be looking at how we can end threads and the various
multithreading models out there

Threads in Python
Before we jump into more detail about the life of a thread, I feel it’s important to know what
we are going to be instantiating in real terms. In order to know this, however, we’ll need to
have a look at Python’s Thread class definition which can be found in .

Within this file, you should see the class definition for the Thread class. This has a
constructor function which looks something like this:

Life of a Thread

[50]

This preceding constructor takes in five real arguments, which are defined within that class
definition as follows:

: This is a special parameter which is reserved for a future extension.
: This is the callable object to be invoked by the method. If not

passed, this will default to , and nothing will be started.
: This is the thread name.
: This is the argument tuple for target invocation. It defaults to .

: This is a dictionary of keyword arguments to invoke the base class
constructor.

Thread state
Threads can exist in five distinct states: running, not-running, runnable, starting, and
ended. When we create a thread, we have, typically, not allocated any resources towards
this thread as of yet. It exists in no state, as it hasn’t been initialized, and it can only be
started or stopped. Let's take a quick look at these five states:

New Thread: In the New Thread state, our thread hasn’t started, and it hasn’t
been allocated resources. It is merely an instance of an object.
Runnable: This is the state when the thread is waiting to run, it has all the
resources it needs in order to proceed, and the only thing holding it back is the
task scheduler having not scheduled it to run.
Running: In this state, the thread makes progress--it executes whatever task it’s
meant to and has been chosen by the task scheduler to run.
From this state, our thread can go into either a dead state if we chose to kill, it or
it could go into a not-running state.
Not-running: This is when the thread has been paused in some way. This could
be caused by a number of reasons such as when waiting for the response of a
long running I/O request. Or it could be deliberately blocked until another thread
has completed its execution.
Dead: A thread can reach this state through one of two ways. It can, much like us,
die of natural causes or be killed unnaturally. The latter poses a significant risk to
the murderer, but we’ll go into these risks in detail in the ending a thread section
of this chapter.

Life of a Thread

[51]

State flow chart
The following diagram represents the five different states that a thread can be in as well as
the possible transitions from one state to another:

Python example of thread state
So now that we know the various states that our threads can be in, how does this translate
into our Python programs? Take a look at the following code:

Life of a Thread

[52]

Breaking it down
In this preceding code example, we define a function, , which will be the
invocation target of the thread that we will create. All that this function
does is to print out its current state, and then sleep for 10 seconds by calling

.

After we’ve defined , we then go on to create a New Thread object in this
line:

At this point in time, our thread object is currently in the New Thread state, and hasn’t yet
been allocated any system resources that it needs to run. This only happens when we go on
to call this function:

At this point, our thread is allocated with all of its resources, and the thread’s function
is called. The thread now enters the "Runnable" state. It goes on to print out its own state,
and then proceeds to block for 10 seconds by calling . During the 10
seconds that this thread sleeps, the thread is considered to be in the "Not-Running" state,
and other threads will be scheduled to run over this thread.

Finally, once the 10-second period has elapsed, our thread is considered to have ended and
be in the "Dead" state. It no longer needs any of the resources that it was allocated, and it
will be cleaned up by the garbage collector.

Different types of threads
Python abstracts most of the complications of lower-level threading APIs, and allows us to
focus on creating even more complex systems on top of it. Not only that, it lets us write
portable code that can leverage either POSIX or Windows threads depending on what
operating system we execute our code on.

But what do we mean when we mention things like POSIX threads or Windows threads?

Life of a Thread

[53]

POSIX threads
When we talk about POSIX threads, we are talking about threads that are implemented to
follow the IEEE POSIX 1003.1c standard. This standard was registered as a trademark of the
IEEE foundation, and was originally developed in order to standardize the implementation
of threads across a range of hardware on UNIX systems. Any implementations of threads
that follow this standard are, typically, called POSIX threads or PThreads for short.

Windows threads
When we talk about Windows threads, we are talking about the standard that Microsoft has
chosen to implement their own low-level threads against other threads. They feature quite a
number of differences when compared to POSIX threads, and the Windows threads API is
simpler and overall more elegant than the POSIX threads API.

The ways to start a thread
In this section of the chapter, we’ll take a look at the numerous ways to start threads and
processes.

Starting a thread
In Python, there are a number of different ways we can actually start a thread. When we
have a relatively simple task that we wish to multithread, then we have the option of
defining this as a single function.

In the following example, we have a very simple function that just sleeps for a random time
interval. This represents a very simple piece of functionality, and is ideal for encapsulating a
simple function, and then passing this simple function as the target for a new

 object as seen in the following code:

Life of a Thread

[54]

Inheriting from the thread class
Fo scenarios that require more code than can be wrapped up in a single function, we can
actually define a class that inherits directory from the thread native class.

This is ideal for scenarios where the complexity of the code is too large for a single function,
and, instead, needs to be broken up into multiple functions. While this does give us more
flexibility overall when dealing with threads, we do have to take into consideration the fact
that we now have to manage our thread within this class.

In order for us to define a New Thread that subclasses the native Python thread class, we
need to do the following at a bare minimum:

Pass in the thread class to our class definition
Call within our constructor in order for our thread to
initialize
Define a function that will be called when our thread is started:

Breaking it down
In the preceding code, we have defined a very simple class called , which
inherits from the thread class. Within our constructor, we call the necessary

 function.

Life of a Thread

[55]

We then also define the function which will be called when we start
. Within this function, we simply call the function to print

our state to the console, and then our thread effectively terminates.

Forking
To fork a process is to create a second exact replica of the given process. In other words,
when we fork something, we effectively clone it and then run it as a child process of the
process that we just cloned from.

This newly created process gets its own address space as well as an exact copy of the
parent's data and the code executing within the parent process. When created, this new
clone receives its own unique Process IDentifier (PID), and is independent of the parent
process from which it was cloned.

Why would you want to clone an existing process though? If you’ve ever done any form of
website hosting, then you’ve probably run into Apache. Apache heavily utilizes forking in
order to create multiple server processes. Each of these independent processes is able to
handle their own requests within their own address space. This is ideal in this scenario, as it
gives us some protection in the sense that, if a process crashes or dies, other processes
running concurrently with it will be unaffected, and able to continue to cater to any new
requests.

Example
Let's see an example of this:

Life of a Thread

[56]

Breaking it down
In the preceding code, we start by importing the Python module. We then define two
distinct functions, one called and one called . The child parent simply prints
out the process identifier, otherwise known as the PID.

In the function, we first print out the PID of the process that we are in before calling
the method to fork the current running process. This creates a brand new
process, which receives its own unique PID. We then call the function, which prints
out the current PID. This PID, as you should notice, is different from the original PID that
was printed out at the start of our script's execution.

This different PID represents a successful forking and a completely new process being
created.

Daemonizing a thread
Firstly, before we look at daemon threads, I feel it is important to know what these are.
Daemon threads are 'essentially' threads that have no defined endpoint. They will continue
to run forever until your program quits.

"Why is this useful?", you might ask. Say, for example, you have a load balancer that sends
service requests to multiple instances of your application. You might have some form of
registry service that lets your load balancer know where to send these requests, but how
does this service registry know the state of your instance? Typically, in this scenario, we
would send out something called a heartbeat or a keep alive packet at a regular interval to
say to our service registry, “Hey, I’m still 200!”.

This example is a prime use case for daemon threads within our application. We could
migrate the job of sending a heartbeat signal to our service registry to a daemon thread, and
start this up when our application is starting. This daemon thread will then sit in the
background of our program, and periodically send this update without any intervention on
our part. What’s even better is that our daemon thread will be killed without us having to
worry about it when our instance shuts down.

Life of a Thread

[57]

Example
An example for this is as follows:

Breaking it down
In the preceding code sample, we define two functions that will act as targets for both our
normal, non-daemon thread as well as . Our function
essentially just prints out its state and sleeps for 20 seconds to simulate a longer-running
program.

The function goes into a permanent loop, and simply prints out
 every 2 seconds. This is simply a placeholder for

whatever heartbeat mechanism you choose to go with further down the line.

In our function, we create two threads, our standard thread and our daemon thread,
and we start both using the same method. You’ll notice that we also use the

 function on our object. This simply sets the thread object’s
daemon flag to whatever we pass into this function, and is only really used for reference.

Handling threads in Python
In this section of the chapter, we’ll take a look at how you can effectively create and manage
multiple threads in Python programs.

Life of a Thread

[58]

Starting loads of threads
The first example we’ll look at is how we can start numerous threads all at once. We can
create multiple thread objects by using a loop and then starting them within the same

 loop. In the following example, we define a function that takes in an integer and which
sleeps for a random amount of time, printing both when it is starting and ending.

We then create a loop which loops up to 10, and create 10 distinct thread objects that
have their target set to our function. It then starts the thread object we’ve
just created, and then we print out the current active threads.

Example
Let's now look at an example:

Breaking it down
In the preceding code, we define a simple function called which takes in
as its only parameter. Within this function, we simply call the function and
pass in a randomly generated between 1 and 10.

We then go on to declare a loop that loops from 1 to 10, which creates a thread object
and then starts it while passing in to our thread's args. When you run this script, you
should see something like this:

 $ python3.6 00_startingThread.py
Thread 0 started
Active Threads: [<_MainThread(MainThread, started 140735793988544)>,
<Thread(Thread-1, started 123145335930880)>]
Thread 1 started

Life of a Thread

[59]

Active Threads: [<_MainThread(MainThread, started 140735793988544)>,
<Thread(Thread-1, started 123145335930880)>, <Thread(Thread-2, started
123145341186048)>]
Thread 2 started
Active Threads: [<_MainThread(MainThread, started 140735793988544)>,
<Thread(Thread-1, started 123145335930880)>, <Thread(Thread-2, started
123145341186048)>, <Thread(Thread-3, started 123145346441216)>]

Slowing down programs using threads
While working with threads, it’s important to know that starting hundreds of threads and
throwing them all at a specific problem is probably not going to improve the performance
of your application. It’s highly probable that if you spin up hundreds or thousands of
threads, you could, in fact, be absolutely killing performance.

In , Speed it Up!, we touched upon how we could use multiple processes in order
to speed up a very simple prime factorization program that was computationally intensive.
On my machine, I witnessed a good 50-100% speed increase by adding these multiple
processes, but what happens is that we try to, instead, make this multithreaded as opposed
to multiprocessed. Let's take a look at this example:

Example

Life of a Thread

[60]

Breaking it down
The preceding sample is almost identical to the Sequential prime factorization in ,
Speed it Up!. You should notice, however, that in the function, instead of defining 10
processes and joining them, we have defined 10 different threads.

If you now run this program, you should see a drastic reduction in the overall performance
of our program when compared with both it’s single-threaded and multiprocessed
counterparts. The results of each are as follows:

Single-threaded sample: 3.69 seconds

Multi-processing sample: 1.98 seconds

Multi-threaded sample 3.95 seconds

As you can see from the results in the preceding table, by starting multiple threads and
throwing them at a problem, we’ve actually managed to achieve a slowdown of around 7%
when compared to our single-threaded solution, and almost a 100% slow down when
compared against our multiprocessed solution.

Life of a Thread

[61]

Getting the total number of active threads
Sometimes, for times when you want to, say, query the status of your application, you may
want to query the number of active threads currently running within your Python program.
Thankfully, Python’s native module easily allows us to get this with a simple
call like the one demonstrated in the following code snippet:

Example

Breaking it down
In the preceding example, all that we are doing is starting a random number of threads
between 2 and 50 and have them sleep for a random time interval before conking out. Once
all the given threads have been started, we then sleep for 4 seconds, call

, and output this in a formatted statement.

Life of a Thread

[62]

Getting the current thread
For a quick and easy way to determine what thread we are on, we can use the

 function, as shown in the following example:

Example

Breaking it down
In the preceding example, we define a function, , which prints out the
current thread. We then go on to create an empty array for our threads, and we populate
this array with 10 distinct thread objects. We then join each of these threads in turn so that
our program doesn’t instantly exit. The output of the preceding program should look
something like this:

 $ python3.6 10_gettingCurrentThread.py
 Current Thread: <Thread(Thread-1, started 123145429614592)>
 Current Thread: <Thread(Thread-2, started 123145429614592)>
 Current Thread: <Thread(Thread-3, started 123145434869760)>
 Current Thread: <Thread(Thread-4, started 123145429614592)>
 Current Thread: <Thread(Thread-5, started 123145434869760)>
 Current Thread: <Thread(Thread-6, started 123145429614592)>
 Current Thread: <Thread(Thread-7, started 123145434869760)>
 Current Thread: <Thread(Thread-8, started 123145429614592)>
 Current Thread: <Thread(Thread-9, started 123145434869760)>
 Current Thread: <Thread(Thread-10, started 123145429614592)>

Life of a Thread

[63]

Main thread
All Python programs feature at least one thread--this sole thread is the main thread. In
Python, we are able to call the aptly named function from wherever we are
to retrieve the main thread object. Let's look at this example:

Example

Breaking it down
In the preceding code, we define a simple function called . This will be the
target of the thread object that we shall create for demonstration purposes. Within this
function, we simply print out the current thread and then the main thread.

We then go on to create a thread object, and then start and join this newly created thread. In
the output, you should see something like this:

 $ python3.6 15_mainThread.py
 Child Thread Starting
 Current Thread ----------
 <Thread(Thread-1, started 123145387503616)>

 Main Thread -------------
 <_MainThread(MainThread, started 140735793988544)>

 Child Thread Ending

Life of a Thread

[64]

As you can see, our program prints out first our child thread object, and then goes on to
print out the reference of our object.

Enumerating all threads
There may be a time when you need to enumerate through all active threads in order to do
things like query the status of all active threads. Sometimes, however, you may lose track of
which threads are at play at a given point of an application.

Thankfully, Python natively allows us to query all the active threads, and then enumerate
them easily so that we can obtain the information we need on them, or to properly kill
them, and so on. Let's look at an example:

Example

Breaking it down
In the preceding example, we start off by defining a very simplistic function called

, which will be the target of the threads that we are about to create. Within this
function, we simply print that the thread has started, and then we wait for a random
interval between 1 and 5 seconds before printing that the thread is terminating.

Life of a Thread

[65]

We have then defined a function which creates four distinct thread objects, and then
starts them off. Once we’ve finished creating and starting these threads, we then print out
the results of , which should output something like this:

 $ python3.6 07_enumerateThreads.py
 Thread 0: started
 Thread 1: started
 Thread 2: started
 Thread 3: started
 Enumerating: [<_MainThread(MainThread, started 140735793988544)>,
 <Thread(Thread-1, started 123145554595840)>, <Thread(Thread-2,
 started 123145559851008)>, <Thread(Thread-3, started
 123145565106176)>, <Thread(Thread-4, started 123145570361344)>]
 Thread 2: finished
 Thread 3: finished
 Thread 0: finished
 Thread 1: finished

Identifying threads
In certain scenarios, it can be very helpful for us, as developers, to be able to distinguish
between different threads. In some scenarios, your application may be made up of
hundreds of different threads, and identifying them might help ease your pain when it
comes to debugging and identifying issues with your underlying program.

In massive systems, it is a good idea to segregate threads into groups if they are performing
different tasks. Say, for instance, you have an application that both listens for incoming
stock price changes and also tries to predict where that price will go. You could, for
instance, have two different thread groups here: one group listening for the changes and the
other performing the necessary calculations.

Having different naming conventions for the threads that do the listening and the threads
that do the calculations could make your job of tailing log files a hell of a lot easier.

Example
In this example, we’re going to keep our naming convention really simple; we’ll just call our
threads Thread-x, where x will be a unique number:

Life of a Thread

[66]

Breakdown
In the preceding code, what we essentially do is define a function called . Within
this function, we utilize the getter in order to
retrieve the current thread’s moniker, and print this out both when we start our thread’s
execution, and when it ends.

We then go on to start a loop, and create four thread objects that take in the name
parameter, which we define as , as well as the function as
the target of that thread’s execution.

We then, finally, go on to print out all the active threads currently running. This should
print out something like the following:

 $ python3.6 11_identifyingThreads.py
 Thread Thread-0 starting
 Thread Thread-1 starting
 Thread Thread-2 starting
 Thread Thread-3 starting
 [<_MainThread(MainThread, started 140735793988544)>,
 <Thread(Thread-0, started 123145368256512)>, <Thread(Thread-1,
 started 123145373511680)>, <Thread(Thread-2, started
 123145378766848)>, <Thread(Thread-3, started 123145384022016)>]
 Thread Thread-0 ending
 Thread Thread-2 ending
 Thread Thread-3 ending
 Thread Thread-1 ending

Life of a Thread

[67]

Ending a thread
Ending threads is deemed bad practice, and one that I actively advise against. Python
doesn’t actually provide a native thread function with which to kill other threads, so this
should raise flags straight away. These threads that you wish to terminate could be holding
a critical resource that needs to be opened and closed properly, or they could also be the
parents to multiple child threads. By killing parent threads without killing their child
threads, we essentially create orphan threads.

Best practice in stopping threads
If you require some form of a thread shutdown mechanism, then it is your job to implement
a mechanism that allows for a graceful shutdown as opposed to killing a thread outright.

However, there does exist a workaround; while threads might not possess a native
mechanism for termination, processes do, in fact, feature such a mechanism. As you should
know by now, processes are essentially beefier versions of threads, and while it might not
be ideal, in some situations you have to ensure that your programs can gracefully shut
down, and this presents itself as a far cleaner solution than implementing your own thread
termination. Let's take a look at another example:

Example

In the preceding example, we define a simple function which prints out the
time at which it was started, and then sleeps for 20 seconds. We then go on to declare

, which is a type process, and we pass in our function as the target for
its execution.

Life of a Thread

[68]

We kick off the process, and then immediately terminate it using the method.
You should notice in the output that this program finishes almost instantly, and the

 process does not block for the full 20 seconds it was meant to.

Output
 $ python3.6 09_killThread.py
 Process <Process(Process-1, initial)>
 Terminating Process...
 Process Terminated: <Process(Process-1, stopped[SIGTERM])>

Orphan processes
Orphan processes are threads that have no alive parent process. They take up system
resources and provide no benefit, and the only way to kill them is to enumerate alive
threads and then kill them.

How does the operating system handle
threads
So now that we’ve taken a look at the life cycle of a thread, it’s important to know how
these threads actually work within your machines. Understanding things like the
multithreading model and how Python threads map to system threads is important if you
are to make the right decisions when designing your high-performance software.

Creating processes versus threads
A process, as we’ve seen, is a more heavyweight version of a simple thread in the sense that
we can do things like spin up multiple threads within a process. They can perform more
CPU-bound tasks better than a standard thread would due to the fact that they each feature
their own separate GIL instance.

However, it’s important to note that while these might be far better at CPU-bound
problems, they are also more resource intensive. Being more resource intensive means that
they are also more expensive to spin up on the fly and kill off just as quickly. In this next
example, we’ll look at the performance impact of spinning up multiple threads, and
compare this to the spinning up of multiple processes.

Life of a Thread

[69]

Example

Breaking it down
You’ll see in the preceding example that we define a function which will be the
target of both the threads and the processes that we'll create.

We first store the starting time in our variable, and then go on to create an empty array
called threads, which will conveniently store the references to all of our thread objects that
we create. We then go on to create and then start these threads before recording the time
again so that we can calculate the total time needed to perform both the creation and
starting.

Life of a Thread

[70]

We then go on to follow the exact same creation and starting process as before, but this
time, with processes as opposed to threads. We record the times again, and calculate the
difference. When running this script on my machine, the two recorded times for creation
and starting were an order of magnitude apart. Creating and starting processes took 10x the
amount of time it took to create and start ordinary threads. The output for this particular
program looked like this on my machine:

 [20:08:07] ~/Projects/Python/Chapter 03 master��
 $ python3.6 13_forkVsCreate.py
 Total Time for Creating 10 Threads: 0.0017189979553222656 seconds
 Total Time for Creating 10 Processes: 0.02233409881591797 seconds

Now, while the times taken to do both these tasks might be minimal for our relatively
lightweight example, consider the performance impact you would see if you were starting
hundreds or thousands of processes or threads on huge server racks.

One way we can combat this is to do all our process or thread creation at the start and store
them in a pool so that they can sit and wait for further instructions without us having to
incur these heavy costs of creation. We’ll be looking at this concept of thread pools and
process pools in more depth in , Executors and Pools.

Multithreading models
In , Speed It Up!, the first section provide a brief introduction to concurrency,
where we talked about the two distinct types of threads that we have on a single machine.
These were user threads and kernel threads, and it’s useful to know how these map to each
other, and the different ways that they can be mapped together. In total, there are these
three different styles of mapping:

One user thread to one kernel thread
Many user-level threads to one kernel thread
Many user threads to many kernel threads

Within Python, we typically go with the one user thread to one kernel thread mapping, and
as such, every thread you create within your multithreaded applications will take up a non-
trivial amount of resources on your machine.

However, there do exist some modules within the Python ecosystem that enable you to
implement multithreaded-esque functionality to your program while remaining on a single
thread. One of the biggest and best examples of this is the module, which we'll be
diving deeper into in , Event-Driven Programming.

Life of a Thread

[71]

One-to-one thread mapping
In this mapping, we see one user-level thread being mapped directly to one kernel-level
thread. One-to-one mappings can be expensive due to the inherent costs of creating and
managing kernel-level threads, but they provide advantages in the sense that user-level
threads are not subject to the same level of blocking as threads that follow a many-to-one
mapping are subject to:

Many-to-one
In many-to-one mappings, we see many user-level threads being mapped to one solitary
kernel-level thread. This is advantageous as we can manage user-level threads efficiently;
however, should if the user-level thread is blocked, the other threads that are mapped to
kernel-level thread will also be blocked:

Life of a Thread

[72]

Many-to-many
In this threading model, we see many user-level threads being mapped to many kernel-
level threads. This presents itself as the solution to the shortcomings of the previous two
models.

Individual user-level threads can be mapped to a combination of either a single kernel-level
thread or multiple kernel threads. It provides us, as programmers, the ability to choose
which user-level threads we wish to map to kernel-level threads, and, overall, entitle us to a
great deal of power when trying to ensure the very highest of performances when working
in a multithreaded environment:

Life of a Thread

[73]

Summary
In this chapter, we’ve delved deep into the workings of Python’s native threading library.
We’ve looked in depth at how we can effectively work with threads at a very granular level,
and take full advantage of everything that the Python threading API has to offer.

We’ve looked at the numerous different thread types, and how they compare to each other.
Not only that, but we’ve looked in detail at various concepts such as the multithreading
model, and the numerous ways in which we can make user threads to their lower level
siblings, the kernel threads.

In the next chapter, we’ll dive into some of the key concurrency primitives that Python has
on offer. Understanding these primitives will pave the way for us when it comes to making
thread-safe programs that we can confidently push into production environments.

44
Synchronization between

Threads
Now that we’ve taken a look at threads, and how we can work with and create these
threads using various mechanisms in the previous chapter, it’s time to look at some of the
basic synchronization primitives we can leverage within our multi-threads.

It’s not enough to simply add multiple threads to your application in order to improve
performance. You also have to take into consideration complexities such as race conditions,
and ensure that your code is properly guarded against them.

In this chapter, we’ll look at some of the following concepts:

How we can synchronize our data between threads
Race conditions--what are they and how to guard against them
Deadlock, and how it can cripple your systems and bring them to their knees
An overview of all of the synchronization primitives that Python has to offer

We’ll also be introducing some of the key tools that Python developers utilize in order to
make the fight against conflicts easier and ensure that our programs remain bug free.

Synchronization between Threads

[75]

Synchronization between threads
So you know what threads are and how to properly start and end them in Python, and
hopefully, you are starting to realize at least some of the complexity that it takes to
implement concurrent programs. But how do we make sure that we are implementing
multithreading in a safe way without compromising the flow of our program? In this
chapter, we’ll be introducing some of the fundamental issues that can plague multithreaded
applications if not guarded against.

Before we cover some of the key synchronization primitives, we must first have a look at
some of the issues that can occur from using the said primitives. This leads us directly into
one of the biggest and most feared issues one can face when designing concurrent systems,
that is, deadlock. One of the best ways to illustrate this concept of deadlock is to look at the
Dining Philosophers Problem.

The Dining Philosophers
The Dining Philosophers problem is one of the most famous illustration of some of the
problems you can encounter when working in concurrent software systems. It was,
originally the famous Edsger Dijkstra, who you were introduced to in , Speed It
Up!, that presented this problem to the world. It was Tony Hoare, however, who gave the
problem it’s more official formulation.

Synchronization between Threads

[76]

In the Dining Philosophers problem, we encounter five famous philosophers sitting at a
round table eating from bowls of spaghetti. Between each of these bowls, there are five
forks that the philosophers can use to eat their food with. For some strange reason however,
these philosophers decide that they each require two of the five forks in order to eat their
food.

Each of these philosophers, however, could be either in eating or thinking state, and
whenever they choose to dive into the food in front of them, they must first obtain both the
left and the right fork. However, when a philosopher takes a fork, they have to wait till they
have eaten before they can relinquish said fork.

This method of eating presents a problem when each of the five philosophers manages to
pick up their left fork at the same time.

In the preceding diagram, we see just such a situation arise. Each of the five philosophers
has picked up the left fork and is now sitting thinking until such time as the right fork is
available. Since every philosopher will never relinquish their fork until they have eaten, the
dinner table has reached a deadlocked state, and will never go further.

Synchronization between Threads

[77]

This problem illustrates a key issue we may run into when we are designing our own
concurrent systems that rely on key synchronization primitives (locks) in order to function
correctly. Our forks, in this example, are our system resources, and each philosopher
represents a competing process.

Example
In this next example, we are going to implement our own version of the Dining
Philosophers problem in Python using RLocks, which we’ll cover later on in this chapter.
These Rlocks will represent the forks in our problem. We’ll start by defining our

 class and constructor like this:

The class, which inherits from the Python’s native thread class, takes in both
a left and a right fork in its constructor function. It then initializes the thread that we can
start later on. After we’ve defined this, we then have to define our thread's function as
follows:

Synchronization between Threads

[78]

In this function, we first think for a random amount of time between 1 and 5 seconds.
When our Philosopher finishes thinking, we then attempt to acquire the left fork and again
sleep for another 1-5 seconds in order to easily follow the console output.

After we’ve again finished waiting, we go on to try and acquire the right fork so that we can
go into an eating state. We eat only very briefly before releasing both the left and the right
fork.

Output
When you attempt to run this Python program, you should see that some of our
Philosophers may get a chance to eat before releasing both locks. However, very quickly,
you will see that every fork has been acquired by a Philosopher, and it’s now stuck in a
state where it’s attempting to acquire the right fork.

In the following output, you will see all of our dining philosophers doing a combination of
thinking, eating, and acquiring and releasing forks. However, after a certain amount of
time, you will, eventually, hit the scenario where all the philosophers have acquired all left
forks, and are unable to proceed further, as follows:

 Marx has started thinking
 Russell has started thinking
 Aristotle has finished thinking
 Marx has finished thinking
 Aristotle has acquired the left fork
 Aristotle has attained both forks, currently eating
 Aristotle has released the right fork
 Aristotle has released the left fork
 Aristotle has finished thinking
 Russell has finished thinking
 Kant has finished thinking
 Spinoza has finished thinking
 Aristotle has acquired the left fork
 Marx has acquired the left fork
 Russell has acquired the left fork
 Kant has acquired the left fork
 Spinoza has acquired the left fork

Synchronization between Threads

[79]

Race conditions
Now that we’ve had a look at deadlock, it’s time to talk about race conditions. Race
conditions are an equally troublesome and oft-cursed aspect of concurrent programming
that plague hundreds, if not thousands, of programs around the world.

The standard definition of a race condition is as follows:

A race condition or race hazard is the behavior of an electronic, software, or other
where the output is dependent on the sequence or timing of other uncontrollable events.

Let’s break this definition down into simpler terms. One of the best metaphors to describe a
race condition is if we imagine writing a banking application that updates your account
balance whenever you deposit or withdraw any money from that account.

Imagine, we started with £2,000 in our bank account, and say we are about to receive a
bonus of £5,000, because we managed to bug fix a concurrency issue in work that was
costing the business millions. Now also imagine that you are also to pay a rent of £1,000 on
the same day--this is where a potential race condition could leave you out of pocket.

If our banking application had two processes, one of which dealt with the withdrawing,
Process A, and the other which dealt with the depositing, Process B. Say Process B, which
deals with deposits into your account, reads your bank balance as £2,000. If Process A was
to start its withdrawal for the rent just after Process B starts its transaction, it would see the
starting balance as £2,000. Process B would then complete its transaction, and correctly add
£5,000 to our starting £2,000, and we’d be left with the grand sum of £7,000.

However, since Process A started its transaction thinking that the starting account balance
was £2,000, it would unwittingly leave us bonus-less when it updates our final bank balance
to £1,000. This is a prime example of a race condition within our software, and it’s a very
real danger always waiting to strike us in the most unfortunate ways.

Process execution sequence
Let’s take a look at what happened in closer detail. If we look at the following table, we’ll
see the ideal flow of execution for both Process A and Process B:

Synchronization between Threads

[80]

However, due to the fact we haven’t implemented proper synchronization mechanisms to
protect our account balance, Process A and Process B actually followed the following
execution path and gave us an erroneous result:

Now onto the important part--how do we solve the preceding problem so that we no longer
live in fear of losing our bonuses in the future? In this relatively simple example, the answer
would be to wrap the code that first reads the account balance, and execute any necessary
transactions in a lock, which we’ll go into more detail on later in this chapter.

Synchronization between Threads

[81]

By wrapping the code that performs the read of the account balance and the update in a
lock, we ensure that Process A would first have to acquire the lock in order to both read and
update our account balance, and likewise, for Process B. This would turn our non-
deterministic program deterministic and free of our initial race condition. But by turning it
into a deterministic program, we are, essentially, converting this section of code into a
single-threaded, serial section of code that could impact performance if we were to have
multiple threads.

Critical sections
We can identify critical sections as any parts of our code that modify or access a shared
resource. These critical sections cannot, under any circumstance, be executed by more than
one process at any one time. It is when these critical sections are executed simultaneously
that we start to see unexpected or erroneous behavior.

Say, for instance, we are writing the code for the banking application example previously
defined. We could categorize the part of the code that does the initial reading of the bank
account up to the point at which it’s updating the accounts bottom line as a critical section.

It was through concurrent execution of this critical section that we first ran into a race
condition. By understanding where in our code, we have critical sections, we, as
programmers, are able to more accurately protect these sections using some of the
primitives that I’ll be outlining later on in this chapter.

Filesystem
It’s important to note that race conditions can plague our filesystem as well as our
programs. One potential issue could be that two processes simultaneously try to modify a
file on the file system. Without appropriate synchronization controls around these files, it’s
possible that the file could, potentially, become corrupted and useless with two processes
writing to it.

Life-critical systems
One of the worst examples of how race conditions can plague our software is in the
software that controlled the Therac-25 radiation therapy machines. This race condition was,
unfortunately, enough to cause the death of, at least, three patients who were receiving
treatment from the machine.

Synchronization between Threads

[82]

Most of the time, the software we write will not be as critical as the software that is used
within medical devices like this. However, it serves as a very morbid warning to ensure that
you try to take every measure in order to prevent your own software from being affected.

Shared resources and data races
One of the major things we need to guard against when implementing concurrency in your
applications is race conditions. These race conditions can cripple our applications, and
cause bugs that are hard to debug and even harder to fix. In order to prevent these issues,
we need to both understand how these race conditions occur and how we can guard against
them using the synchronization primitives we’ll be covering in this chapter.

Understanding synchronization and the basic primitives that are available to you is vital if
you are to create thread-safe, high-performance programs in Python. Thankfully, we have
numerous different synchronization primitives available to us in the threading Python
module that can help us in a number of different concurrent situations.

In this section, I’ll be giving you a brief overview of all of the synchronization primitives
available to you as well as a few simple examples of how you can use these within your
programs. By the end of it, you should be able to implement your own concurrent Python
programs that can access resources in a thread-safe way.

Synchronization between Threads

[83]

The join method
When it comes to developing incredibly important enterprise systems, being able to dictate
the execution order of some of our tasks is incredibly important. Thankfully, Python’s
thread object allow us to retain some form of control over this, as they come with a
method.

The method, essentially, blocks the parent thread from progressing any further until
that thread has confirmed that it has terminated. This could be either through naturally
coming to an end, or whenever the thread throws an unhandled exception. Let's understand
this through the following example:

Breaking it down
The preceding code example shows an example of how we can make the flow of our
threaded programs somewhat deterministic by utilizing this method.

We begin by defining a very simple function called , which takes in one
parameter. All this function does is print out when it has started, sleep for whatever value is
passed into it times 2, and then print out when it has finished execution.

In our function, we define two threads, the first of which we aptly call , and
pass in a value of as its sole argument. We then start this thread and execute a
statement. What’s important to note is that this first print statement executes before the
completion of our .

Synchronization between Threads

[84]

We then create a second thread object, and imaginatively, call this , and pass in
as our sole argument this time. The key difference, though, is that we call
immediately after we start this thread. By calling , we can preserve the order in
which we execute our statements, and you can see in the output that

 does indeed get printed after has terminated.

Putting it together
While the method may be very useful and provide you with a quick and clean way of
ensuring order within our code, it’s also very important to note that you could, potentially,
undo all the gains we’ve made by making our code multithreaded in the first place.

Consider our object in the preceding example--what exactly did we gain by
multithreading this? I know that this is a rather simple program, but the point remains that
we joined it immediately after we started it, and essentially, blocked our primary thread
until such time as completed its execution. We, essentially, rendered our
multithreaded application single threaded during the course of the execution of .

Locks
Locks are an essential mechanism when trying to access shared resources from multiple
threads of execution. The best way to picture this is to imagine you have one bathroom and
multiple flat mates--when you want to freshen up or take a shower, you would want to lock
the door so that nobody else could use the bathroom at the same time.

A lock in Python is a synchronization primitive that allows us to essentially lock our
bathroom door. It can be in either a "locked" or "unlocked" state, and we can only acquire a
lock while it's in an "unlocked" state.

Example
In , Parallelize It, we had a look at the following code sample:

Synchronization between Threads

[85]

In this preceding sample, we saw two threads constantly competing in order to increment
or decrement a counter. By adding locks, we can ensure that these threads can access our
counter in a deterministic and safe manner.

Synchronization between Threads

[86]

Breaking it down
In the preceding code, we’ve added a very simple lock primitive that encapsulates both of
the while loops within our two worker functions. When the threads first start, they both
race to acquire the lock so that they can execute their goal, and try to increment the counter
to either 1,000 or -1,000 without having to compete with the other thread. It is only after one
thread accomplishes their goal and releases the lock that the other can acquire that lock and
try to either increment or decrement the counter.

The preceding code will execute incredibly slowly, as it’s mainly meant for demonstration
purposes. If you removed the calls within the while loop, then you should
notice this code executes almost instantly.

RLocks
Reentrant-locks, or RLocks as they are called, are synchronization primitives that work
much like our standard lock primitive, but can be acquired by a thread multiple times if
that thread already owns it.

For example, say, thread-1 acquires the RLock, so, for each time that thread-1 then acquires
the lock, a counter within the RLock primitive is incremented by 1. If thread-2 tried to come
along and acquire the RLock, then it would have to wait until the counter of the RLock
drops to 0 before it could be acquired. Thread-2 would go into a blocking state until this 0
condition is met.

Synchronization between Threads

[87]

Why is this useful, though? Well, it can come in handy when you, for instance, want to have
thread-safe access for a method within a class that accesses other class methods.

Example
Let's see the following example:

Breaking it down
In the preceding code, we see a prime example of the way an RLock works within our
single-threaded program. We have defined a class called , which features four
functions, these are the constructors which initialize our Rlock and our a and b variables.

Synchronization between Threads

[88]

We then go on to define two functions that both modify a and b respectively. These both
first acquire the classes Rlock using the statement, and then perform any necessary
modifications to our internal variables.

Finally, we have our function, which performs the initial Rlock acquisition
before calling the and functions.

At each step of the way, we print out the state of our Rlock. We see that after it has been
acquired within the function, its owner is set to the main thread, and its count
is incremented to one. When we next call , the Rlocks counter is again incremented
by one, and the necessary calculations are made before then releases the Rlock.
Upon the function release of the Rlock, we see the counter decrement to 1 before
being immediately incremented to 2 again by our function.

Finally, when completes its execution, it releases the Rlock, and then, so does our
 function. When we do a final print out of our Rlock object, we see that the

owner has been set to 0, and that our count has also been set to 0. It is only at this point in
time that another thread could, in theory, obtain this lock.

The output would look as follows:

 $ python3.6 04_rlocks.py
 Rlock acquired, modifying A and B
 <locked _thread.RLock object owner=140735793988544 count=1 at
 0x10296e6f0>
 Modifying A : RLock Acquired: True
 <locked _thread.RLock object owner=140735793988544 count=2 at
 0x10296e6f0>
 <locked _thread.RLock object owner=140735793988544 count=1 at
 0x10296e6f0>
 Modifying B : RLock Acquired: True
 <locked _thread.RLock object owner=140735793988544 count=2 at
 0x10296e6f0>
 <unlocked _thread.RLock object owner=0 count=0 at 0x10296e6f0>

Synchronization between Threads

[89]

RLocks versus regular locks
If we were to try and perform the same preceding program using a traditional lock
primitive, then you should notice that the program never actually reaches the point where
it’s executing our function. Our program would, essentially, go into a form of
deadlock, as we haven’t implemented a release mechanism that allows our thread to go any
further. This is shown in the following code example:

RLocks, essentially, allow us to obtain some form of thread safety in a recursive manner
without having to implement complex acquiring, and release lock logic throughout your
code. They allow us to write simpler code that is easier to follow, and as a result, easier to
maintain after our code goes to production.

Synchronization between Threads

[90]

Condition
A condition is a synchronization primitive that waits on a signal from another thread. For
example, this could be that another thread has finished execution, and that the current
thread can proceed to perform some kind of calculation on the results.

Definition
Let's have a look at the definition of our object in Python's native library. It's
important to understand these fundamental primitives and how they operate at a more
granular level, so, I implore you to take a look at the full definition of these objects should
you get the time.

The most common scenario that is used to highlight the benefits of conditions is that of a
producer/consumer. You could have a producer that publishes messages to a queue and
notifies other threads, aka the consumers, that there are now messages waiting to be
consumed on that queue.

Example
In this example, we are going to create two different classes that will inherit from the thread
class. These will be our Publisher and our subscriber classes. The publisher will do the task
of publishing new integers to an integer array, and then notifying the subscribers that there
is a new integer to be consumed from the array.

Our class has two functions defined within it--the constructor which takes in
the reference of the integers array and the condition primitive.

Synchronization between Threads

[91]

The function, essentially, goes into a permanent loop when it is invoked, and then
proceeds to generate a random integer between 0 and 1000. Once we have generated this
number, we then acquire the condition, and then append this newly generated integer to
our integers array.

After we have appended to our array, we then first notify our subscribers that there has
been a new item appended to this array, and then we release the condition.

The class, again, has two functions defined within it: the constructor and the
 function. The constructor takes in two things, the first of which is the reference of array

of integers that it will consume from and the second is the condition synchronization
primitive.

Within our function, we start a loop that constantly tries to acquire the condition that
has been passed into it. When we manage to acquire this lock, we print out the fact that the
thread has now acquired it, and then we proceed to try and "pop" the first integer we can
from the integers array that we have passed into it. Once we have successfully managed
this, we then release the condition primitive, and, once again, start trying to reacquire this
condition.

Synchronization between Threads

[92]

In the function of this program, we first declare the integer array that will act almost
like a message queue. We then declare our condition primitive

And finally, we define one publisher and two different subscribers. We then start these
publishers and subscribers and join the threads so that our program doesn’t instantly
terminate before the threads have a chance of executing.

Synchronization between Threads

[93]

The results
When we run this program, you should see an output that is similar to the following. You
should see that when the publisher acquires the condition, it appends a number to the
array, and then notifies the condition and releases it.

 $ python3.6 03_pubSub.py
 Condition Acquired by Publisher: Thread-1
 Publisher Thread-1 appending to array: 108
 Condition Released by Publisher: Thread-1
 Condition Acquired by Consumer: Thread-2
 108 Popped from list by Consumer: Thread-2
 Consumer Thread-2 Releasing Condition
 Condition Acquired by Consumer: Thread-2
 Condition Wait by Thread-2
 Condition Acquired by Consumer: Thread-3
 Condition Wait by Thread-3
 Condition Acquired by Publisher: Thread-1
 Publisher Thread-1 appending to array: 563
 ...

At the point of the condition being notified, the battle starts between the two subscribers
where they both try to acquire this condition first. When one wins this fight, it then goes on
to simply "pop" this number from the array.

Semaphores
In the first chapter, we touched upon the history of concurrency, and we talked a bit about
Dijkstra. Dijkstra was the man that actually took this idea of semaphores from railway
systems and translated them into something that we could use within our own complex
concurrent systems.

Semaphores have an internal counter that is incremented and decremented whenever either
an acquire or a release call is made. Upon initialization, this counter defaults to 1 unless
otherwise set. The semaphore cannot be acquired if the counter will fall to a negative
integer value.

Say we protected a block of code with a semaphore, and set the semaphore’s value to 2. If
one thread acquired the semaphore, then the semaphore’s value would be decremented to
1. If another thread then tried to acquire the semaphore, the semaphore’s value would
decrement to 0. At this point, if yet another thread were to come along, the semaphore
would deny its acquire request until such point as one of the original two threads called the
release method, and the counter incremented to preceding 0.

Synchronization between Threads

[94]

Class definition
The class definition for the Python semaphore object looks like this:

In the preceding constructor function of the class, you’ll notice it takes in a
value, which, unless otherwise set, defaults to 1.

In the class definition, the comments define a semaphore as follows:

Semaphores manage a counter representing the number of calls minus the
number of calls, plus an initial value. The method blocks if
necessary until it can return without making the counter negative. If not given, value
defaults to 1.

Example
This next example is based loosely on a concurrency example from the Stanford computing
department. In this example, we’ll be creating a simple ticket selling program that features
four distinct threads that each try to sell as many tickets of the entire ticket allocation as
they can before the tickets are sold out.

The TicketSeller class
First we'll implement our class. This class will contain it's own internal
counter for how many tickets that it has sold. In our constructor, we initialize our thread
and take in the reference of the semaphore. Within our function, we try to acquire this
semaphore if the number of tickets we have available for sale is less than or equal to 0; if it
is greater than 0, then we increment the number of tickets our has sold, and
decrease by 1. We then release the semaphore and print out our
progress.

Synchronization between Threads

[95]

In the preceding code, we define our class. This class features a constructor
which takes in the reference of our global semaphore object, and also initializes our thread.
Within our function, we define a loop that simulates blocking for anywhere
between 0 and 1 seconds, and then tries to acquire the semaphore. Upon successful
acquisition of the semaphore, it then checks to see if any tickets are available to sell. If there
are, then it increments the number of and decrements
before printing it’s accomplishment out to the console.

Now that we’ve defined our class, we need to first create our semaphore
object which will be passed to all instances of , as follows:

Synchronization between Threads

[96]

When you run the preceding program, you should, hopefully, see an output similar to the
following. In this particular run, we see an almost even distribution of tickets sold between
the four distinct threads. When one of these threads blocks for an indeterminate amount of
time, another thread acquires the semaphore and tries to sell their tickets.

 $ python3.6 06_semaphores.py
 Ticket Seller Started Work
 Thread-1 Sold One (9 left)
 Ticket Seller Started Work
 Ticket Seller Started Work
 Ticket Seller Started Work
 Thread-1 Sold One (8 left)
 Thread-3 Sold One (7 left)
 Thread-3 Sold One (6 left)
 Thread-4 Sold One (5 left)
 Thread-2 Sold One (4 left)
 Thread-1 Sold One (3 left)
 Thread-4 Sold One (2 left)
 Thread-2 Sold One (1 left)
 Thread-3 Sold One (0 left)
 Ticket Seller Thread-4 Sold 2 tickets in total
 Ticket Seller Thread-1 Sold 3 tickets in total
 Ticket Seller Thread-2 Sold 2 tickets in total
 Ticket Seller Thread-3 Sold 3 tickets in total

One thing to note with the preceding example is that if you remove the simulated blocking
of the thread by commenting out in the function, then, when you
run the program, whatever thread acquired the semaphore first will most likely sell all the
tickets. This is because the thread that wins the semaphore is in a prime position to
reacquire the lock before any other thread is able to.

Bounded semaphores
Bounded semaphores are almost identical to normal semaphores. Except for the following:

A bounded semaphore checks to make sure its current value doesn't exceed its initial value.
If it does, ValueError is raised. In most situations semaphores are used to guard resources
with limited capacity.

Synchronization between Threads

[97]

If the semaphore is released too many times, it's a sign of a bug. If a value is not given, the
value defaults to 1.

These bounded semaphores could, typically, be found in web server or database
implementations to guard against resource exhaustion in the event of too many people
trying to connect at once, or trying to perform a specific action at once.

It’s, generally, better practice to use a bounded semaphore as opposed to a normal
semaphore. If we were to change the preceding code for our Semaphore example to use

 and ran it again, we would see almost exactly the
same behavior except that we’ve guarded our code against some very simple programmatic
errors that otherwise would have remained uncaught.

Events
Events are a very useful, but also a very simple form of communication between multiple
threads running concurrently. With events, one thread would, typically, signal that an event
has occurred while other threads are actively listening for this signal.

Events are, essentially, objects that feature an internal flag that is either true or false. Within
our threads, we can continuously poll this event object to check what state it is in, and then
choose to act in whatever manner we want when that flag changes state.

In the previous chapter, we talked about how there were no real mechanisms to kill threads
natively in Python, and that’s still true. However, we could utilize these event objects and
have our threads run only so long as our event object remains unset. While this isn’t as
useful at the point where a SIGKILL signal is sent, it could, however, be useful in certain
situations where you need to gracefully shut down, but where you can wait for a thread to
finish what it’s doing before it terminates.

An Event has four public functions with which we can modify and utilize it:

: This checks to see if the event has been set
: This sets the event

: This resets our event object
: This blocks until the internal flag is set to true

Synchronization between Threads

[98]

Example
In our next example, we are going to show you just how you can control child threads using
an event object, and obtain a form of graceful shutdown:

Breaking it down
In the preceding code, we define a function; within this function, we have a
while loop that only runs while the event object which we pass into this function remains
unset. Within this loop, we simply print out that we are waiting for the event to be set at 1
second intervals.

We define our event object that we’ll be passing to all our child threads within our
function. To do this, we simply call , and it instantiates a
new instance of an event object for us.

We then instantiate our thread object which takes in our object, and start it off. We
then go on to sleep for 10 seconds before setting the signal so that our child thread
can complete its execution.

Barriers
Barriers are a synchronization primitive that were introduced in the third major iteration of
the Python language, and address a problem that could only be solved with a somewhat
complicated mixture of conditions and semaphores.

Synchronization between Threads

[99]

These barriers are control points that can be used to ensure that progress is only made by a
group of threads, after the point at which all participating threads reach the same point.

This might sound a little bit complicated and unnecessary, but it can be incredibly powerful
in certain situations, and it can certainly reduce code complexity.

Example
In the following example, we are going to utilize barriers in order to block the execution of
our threads until all of the threads have reached a desired point of execution:

Breaking it down
If we have a look at the preceding code, we have defined a custom class, , which
inherits from . Within this class, we define the standard
function and the function. Our function takes in our barrier object so that we
can reference it later on.

Synchronization between Threads

[100]

Within our function, we simulate our thread doing some work for a random amount of
time between 1 and 10 seconds, and then we start waiting on the barrier.

Out with our class definition, we first create our barrier object by calling
. The 4 that we’ve passed into this as an argument represents the

number of threads that have to be waiting on the barrier before it will be lifted. We then go
on to define four distinct threads, and join them all.

If you run the preceding program on your system, you should, hopefully, see an output
similar to the following.

You’ll see our four threads printing out that they are working on something, and then, one
by one, they randomly start waiting on our barrier object. Once the 4th thread starts
waiting, the program almost instantly finishes, as all four threads do their final print
statements now that the barrier has been lifted.

 $ python3.6 08_barriers.py
 Thread <myThread(Thread-1, started 123145344643072)> working on
 something
 Thread <myThread(Thread-2, started 123145349898240)> working on
 something
 Thread <myThread(Thread-3, started 123145355153408)> working on
 something
 Thread <myThread(Thread-4, started 123145360408576)> working on
 something
 Thread <myThread(Thread-1, started 123145344643072)> is joining 0
 waiting on Barrier
 Thread <myThread(Thread-3, started 123145355153408)> is joining 1
 waiting on Barrier
 Thread <myThread(Thread-2, started 123145349898240)> is joining 2
 waiting on Barrier
 Thread <myThread(Thread-4, started 123145360408576)> is joining 3
 waiting on Barrier
 Barrier has been lifted, continuing with work
 Barrier has been lifted, continuing with work
 Barrier has been lifted, continuing with work
 Barrier has been lifted, continuing with work

Synchronization between Threads

[101]

Summary
Throughout this chapter, we looked at the various key issues that can impact our
concurrent Python applications. We dived into the topic of deadlocks and the famous
dining philosophers problem, and how this can impact our own software.

By now, you should have a solid understanding of all of the Python synchronization
primitives that are on offer as well as how, and, more importantly, when to use these
primitives. In the next chapter, we’ll be taking an in-depth look at how we can implement
communication between our multithreaded and multiprocess applications.

55
Communication between

Threads
Communication is one of the most important parts of your concurrent systems. Without
proper communication mechanisms implemented, any performance gains we manage to
achieve through the use of concurrency and parallelism could all be for nothing.
Communication represents one of the biggest challenges you will have to overcome when it
comes to communication between both threads and processes, and it’s essential to have a
good understanding of all of the options that are available before you dive in.

In this chapter, we’ll look at the numerous ways that you can implement your own
communication mechanisms, and discuss when and where to use each of these
mechanisms.

We’ll cover the following topics within this chapter:

The standard data structures in Python, and how we can interact with them in a
thread-safe manner
Thread-safe communication using queues, and how we can effectively use these
queue objects
Double-ended queues, and how they differ from traditional queues
How we can utilize all of these new concepts and build our own multithreaded
website Crawler

Communication between Threads

[103]

Standard data structures
Some of Python’s traditional data structure features provide various degrees of thread
safety by default. However, in most cases, we will have to define some form of a locking
mechanism for controlling access to these data structures in order to guarantee thread
safety.

Sets
During my time working with communication between multiple threads in Python, I
discovered that one excellent solution to using sets in a thread-safe manner is to actually
extend the set class, and to implement my own locking mechanism around the actions that I
wish to perform.

Extending the class
If you are used to working in Python then extending the class should be a somewhat simple
operation. We define a class object, which inherits from our traditional Python

 class. Within the constructor for this class, we create a object, which we’ll use in
subsequent functions in order to allow for thread-safe interactions.

Below our constructor, we define the , , and functions. These rely on
the class functionality with one key exception. With each of these functions, we use
the lock that we initialized in our constructor to ensure that all interactions can only be
executed by one thread at any given time, thus ensuring thread safety.

It should be noted that we could use this same technique of extending the existing class
with other Python primitives. By implementing our own, we can then, essentially, leverage
the underlying functionality of these classes with minimal effort on our part.

The following example is taken from the Stack Overflow question:
. This example does a fantastic job of explaining some of the

distinct methods that we’ll cover in this chapter:

Communication between Threads

[104]

It should be noted that this tactic of extending the existing classes and adding your own
thread-safe logic can be done for most, if not all, Python primitives. It's a great way to
leverage some of the excellent features that come with these classes by default, but you need
to ensure that the way in which you are implementing thread safety is correct.

Exercise - extending other primitives
As a means of practice, I would suggest that you try to extend other classes and implement
thread-safe actions for them. Look at how you could extend the List primitive in order to
provide thread safety when you increment a value within that list by 1. This should give
you a good feel for how you can apply this same practice to a whole variety of Python
primitives.

Decorator
While extending existing Python primitives may be the most useful, if not the most
desirable, means to provide thread-safe communication, it should be noted that we can also
use other techniques.

One of the other key methods that we could leverage is to utilize decorators. With this
mechanism, we define our method, , which takes in a method.
This method will then define a new method within it, and call the original
method only when it has acquired .

This allows us to, somewhat effortlessly, turn the potentially erroneous critical sections of
our code into thread-safe sections, which can be called without having to worry about race
conditions.

Communication between Threads

[105]

In this next example, we look at how we can implement our method that
returns a race-condition protected version of our passed in method:

Class decorator
Class decoration takes our previous example one step further, and instead of protecting one
single method, we can protect every function within our class so that all calls are done in a
thread-safe manner.

In the following example, we look at how we can implement a class decorator function. The
 function at the start takes in a list of methods and , and returns a

 function which takes in the method names specified in the decorator as well as
.

This calls , which initializes an instance of our passed-in class, it then
defines a new constructor which also calls . This

 function then iterates through all of the methods in , and
 each method using the function.

This represents a clean and easy way to add thread safety to an entire class while also
giving us the option to choose which functions we wish to lock:

Communication between Threads

[106]

Lists
Lists, by default, are thread safe, but only in the way that we access them. It’s important to
note that the data represented within this list structure is, in fact, not protected, and if you
want to safely modify this data, then you must implement a proper locking mechanism to
ensure that multiple threads can’t potentially run into race conditions within their
execution--this holds true for all thread-safe containers.

Communication between Threads

[107]

The function is one of the few methods for our list data structure that is atomic,
and, as such, thread-safe. Lists, thus, become a very quick and easy structure that we can
leverage for temporary, in-memory storage. However, if we were to attempt to modify
anything within this list in a concurrent fashion, then it’s highly possible that we start to see
the side effects most often attributed to race conditions.

One prime example of such a side effect is if we, for instance, try to update the second
element in our list at the same time as another thread. If one were to read, and subsequently
write, at the same time as a competing thread, then we could see issues where the value is
altered incorrectly.

If you wish to utilize lists within your multithreaded applications, then you can do so by
extending the class in a similar fashion to how we've previously extended the set primitive.

Queues
Queues come in a range of different styles. In Python, we have the option to define three
different types of queues from the native queue module. These are normal Queues,
LifoQueues, and PriorityQueues.

Queues, by default, are thread safe in Python, which means that we do not have to worry
about implementing complex locking mechanisms should we wish to utilize queues within
our applications. This makes them incredibly powerful when it comes to implementing a
quick and easy communication medium through which our numerous threads and
processes can communicate.

FIFO queues
FIFO (first in first out) queues to give them their full name, are the standard queue
implementation that Python has to offer. They follow the exact same queueing mechanism
that you would if you were, say, at the supermarket. The first person to reach the till would
be attended to first, the second person waits and is served second, and so on.

Communication between Threads

[108]

Through following this mechanism, we ensure that our customers are treated fairly, and
that you’ll be able to reasonably estimate roughly how long it will take for you to get served
if you were, say, 7th in the queue.

In this example, we'll utilize the object in order to implement our own
FIFO-based queue:

In the preceding example, we import the necessary queue, Python module. We then go on
to define a function, which will act as the target for our multiple threads
that are going to consume from our queue.

Communication between Threads

[109]

In the following function declaration, we then declare our queue by calling
, and then we proceed to populate the numbers from zero to

nine.

Finally, we go on to declare and instantiate our numerous threads which will consume from
our thread-safe queue. We start these threads, taking care to pass in our newly declared the

 object into their args, and then, subsequently, join them.

If we now execute the preceding code, you should see that our four distinct threads start
grabbing items from the queue one after the other in the order that they were initially put
into the queue. So, 0, being the first number to be placed into the queue, is also the first to be
taken off the queue:

$ python3.6 00_queues.py
Queue Populated
<Thread(Thread-1, started 123145445732352)> removed 0 from the queue
<Thread(Thread-2, started 123145450987520)> removed 1 from the queue
<Thread(Thread-3, started 123145456242688)> removed 2 from the queue
<Thread(Thread-4, started 123145461497856)> removed 3 from the queue
<Thread(Thread-1, started 123145445732352)> removed 4 from the queue
<Thread(Thread-3, started 123145456242688)> removed 5 from the queue
<Thread(Thread-4, started 123145461497856)> removed 6 from the queue
<Thread(Thread-2, started 123145450987520)> removed 7 from the queue
<Thread(Thread-1, started 123145445732352)> removed 8 from the queue
<Thread(Thread-3, started 123145456242688)> removed 9 from the queue

LIFO queues
LIFO (last in first out) queues, act in the opposite fashion to that of normal FIFO queues. To
extend our supermarket analogy further, in using a LIFO queueing mechanism, we,
essentially, serve the last person to join the queue before the existing members of the queue
are served. As you can imagine, if this were a real-life supermarket, there would probably
be a number of complaints put in by people who were spending hours sitting in the same
queue.

Communication between Threads

[110]

In LIFO queues, there is the distinct possibility that a couple of the first people to join the
queue could remain in that position indefinitely as more and more people join the queue
before they can be served. While this may not make sense as a queueing mechanism in the
real world, LIFO has its advantages when it comes to programming.

LIFO queues come in particularly handy when it comes to implementing artificial-
intelligence-based algorithms such as depth-first search, depth-limited search, and so on. It
also comes in very handy when you want to reverse the order of something--simply
populate your LIFO queue with every element, and then pop them off again once you are
done. The results of this are more clearly defined in the following illustration:

In the following example, we define , which we populate with numbers from
. We then create a series of subscribers that retrieve all items from this queue until it

is empty.

Communication between Threads

[111]

The preceding code isn’t that dissimilar to the code that we used for the normal FIFO
queue. The only real difference is that when we declare our object, we declare it
using instead of the normal .

If we now run the last program, you should see that it’s almost identical to our FIFO queue
except for one main distinction--our threads remove the numbers from our queue in the
exact opposite order than they were initially put into the queue:

Communication between Threads

[112]

PriorityQueue
If we move away from our supermarket analogy and now think about an airport security
area, there are some people who are more important than the regular customers. These are
people like the pilots, the cabin crew, and others. In these exceptional circumstances, we’d
typically move them up to the front of the queue so that they could proceed to get the
planes in which we are about to fly to get them ready for takeoff.

In other words, we are giving them some form of priority within our queueing mechanism.
Sometimes, in the systems that we develop, we need to also accommodate some form of
prioritization mechanism so that incredibly important tasks aren’t stuck behind millions of
relatively unimportant operations for indefinite periods of time. This is where our

 object comes into play.

With , we can give everything that we put into the queue a weight as to
how important it is. We can populate our in much the same way that we
populate our normal object except that we use tuples, and pass in

 as the first value in our tuple: (,).

In the following example, we create which we will populate with two sets
of data, both identical, ranging from . We then define a subscriber that
will call get on our until such point as the queue is empty.

Communication between Threads

[113]

Again, the preceding code is pretty much identical to the code that we’ve seen before, the
only difference being that we’ve changed the way we’ve initialized our object, and
we’ve changed how to populate the queue to this:

This last piece of code populates our queue with two sets of tuples, both with the same
 and the same , as follows:

Order of Queue Population Tuple (,) Execution Order

1 (0, 0) 1st

2 (1,1) 3rd

3 (2,2) 5th

4 (3,3) 7th

5 (4,4) 9th

6 (0, 0) 2nd

7 (1,1) 4th

Communication between Threads

[114]

8 (2,2) 6th

9 (3,3) 8th

10 (4,4) 10th

If we run this program in our command-line, you should see that the order in which we
remove our elements corresponds to the priority of the items within our queue. Our two 0
elements have the highest priority and are removed first, the 1s follow shortly after, and so
on until we have removed all the elements from the priority queue:

$ python3.6 02_priorityQueue.py
Queue Populated
<Thread(Thread-1, started 123145475166208)> removed 0 from the queue
<Thread(Thread-2, started 123145480421376)> removed 0 from the queue
<Thread(Thread-2, started 123145480421376)> removed 1 from the queue
<Thread(Thread-1, started 123145475166208)> removed 1 from the queue
<Thread(Thread-2, started 123145480421376)> removed 2 from the queue
<Thread(Thread-1, started 123145475166208)> removed 2 from the queue
<Thread(Thread-2, started 123145480421376)> removed 3 from the queue
<Thread(Thread-1, started 123145475166208)> removed 3 from the queue
<Thread(Thread-2, started 123145480421376)> removed 4 from the queue
<Thread(Thread-1, started 123145475166208)> removed 4 from the queue
Queue is empty

Queue objects
With all of these aforementioned queue objects, there comes a range of different public
methods with which we can use to work with the queue objects.

Full/empty queues
We need to be able to limit the size of our queues within our programs; if we let them
expand for ever, then we could, in theory, start facing . The amount of
memory one Python program could take is limited by the amount of memory we have
available on our systems.

By constraining the size of our queues, we are able to, effectively, guard ourselves from
hitting these memory constraints. In this example, we’ll create a queue, and pass in the

 parameter, which will be set to zero. We’ll then go on to create four distinct
threads that will each try and populate this queue with an arbitrary number.

Communication between Threads

[115]

We’ll then join all of our newly created threads, and attempt to put as many elements into
our queue as possible.

In the following example, we create a series of publishers that attempt to publish to our
 object until it is full:

Upon execution of our code, you should see each thread append at least one item to our
queue until the point where the queue has five different elements. At this point, our queue
is deemed full, and the execution of our threads terminates:

$ python3.6 09_fullQueue.py
<Thread(Thread-1, started 123145399971840)> Appended 1 to queue: 1
<Thread(Thread-2, started 123145405227008)> Appended 1 to queue: 2
<Thread(Thread-3, started 123145410482176)> Appended 1 to queue: 3
<Thread(Thread-4, started 123145415737344)> Appended 1 to queue: 4
<Thread(Thread-1, started 123145399971840)> Appended 1 to queue: 5

Communication between Threads

[116]

The join() function
The function on our objects allow us to block our current thread's execution
until such point that all elements from the queue have been consumed. This provides us
with an excellent stopgap method for when we need to ensure that everything we need to
have done is done.

The following example creates a number of subscribers that subscribe to our queue object.
These subscribers then call the get method until such point as our queue is empty:

Communication between Threads

[117]

In the preceding code sample, we first define our function that takes our
 object as its primary argument. Within this, we first sleep for one second, and then

enter a loop that runs until our queue is not empty. Within this loop, we first
attempt to retrieve an item from our array, and then go on to check to see if this item is
none.

If the item isn’t none, then we print the current thread and that we’ve read it from our
queue. We then call to signal the end of our blocking get request.

Upon execution of our last program, you should see that our distinct threads continue to
pop elements from the queue until such point as the queue is declared empty. At this point,
our join condition is fulfilled, and our program completes it’s execution:

$ python3.6 10_queueJoin.py
Queue Populated
Not Progressing Till Queue is Empty
<Thread(Thread-1, started 123145410052096)> removed 0 from the queue
<Thread(Thread-1, started 123145410052096)> removed 1 from the queue
<Thread(Thread-1, started 123145410052096)> removed 2 from the queue
<Thread(Thread-1, started 123145410052096)> removed 3 from the queue
<Thread(Thread-1, started 123145410052096)> removed 4 from the queue
Queue is now empty

Deque objects
Deques or double-ended queues are another communication primitive that we can actively
leverage in our quest for thread-safe inter-thread communication. It belongs to the

 module, and it features functionality much like that of a queue except for the
fact that we can pop and push elements into either end of the queue.

Example

Communication between Threads

[118]

Breakdown
In the preceding code example, we first import the module from which we’ll
be using the object. We then go on to define our object by calling

 and passing in as a means of populating our
newly instantiated the object.

We then go on to print out our object, which displays our object as an array of
all of the elements that we have placed into it, and for thoroughness, we then iterate
through this object and print out the values of our array. Finally, we query the left-
most and right-most objects, and print these out to our console.

Output
Our program should first print out our complete before iterating through each and
every element. We then call to retrieve the leftmost element of our

 object, and then to retrieve the rightmost element of our
 object.

$ python3.6 03_deque.py
Dequeue: deque(['1', '2', '3', '4', '5', '6'])
Item 1
Item 2
Item 3
Item 4
Item 5
Item 6
Left Most Element: 1
Right Most Element: 6

Communication between Threads

[119]

Appending elements
Being able to query and view all of the elements in our object might be useful in
some situations, but, typically, you will want to interact with these objects. In this next
example, we are going to introduce the and functions that enable
us to publish new items into our object at either the first or the last position of our

 object.

Example
The following code example will show you how we can append to both the start and the
end of our object:

Breaking it down
In the last code example, we first create a object. We then print
out the current state of this , and then append 1 to the end of this queue using the

 function. We then again print out the state of our object, and see that this
has accurately appended our 1 to the right-hand side. We then utilize the
function in order to append a 6 to the front of our object.

Communication between Threads

[120]

Output
When we run the preceding program, we should see our original with elements 1-6.
After we have appended 1 using the function, we then see printing out
with 1 at the end of our object. We then call the function, and again
print out our object, and see appear at the at the start of our object.

$ python3.6 04_addRemoveDeque.py
Deque: deque(['1', '2', '3', '4', '5', '6'])
Deque: deque(['1', '2', '3', '4', '5', '6', '1'])
Deque: deque(['6', '1', '2', '3', '4', '5', '6', '1'])

Popping elements
Conversely, we may have to retrieve some of the elements that we publish to our
object. The way to do this is to utilize the and the public functions that
come with our object.

Example
The following code example will show you how we can pop items from both the start and
the end of our queues using and :

Communication between Threads

[121]

Breaking it down
In the preceding code sample, we again declare our standard object,
and pass in our 1-6 values. We then print out the current state of our deque immediately
after this so we know how our base deque looks.

We then first declare a variable, and call in order to
retrieve the rightmost value from our object. Immediately after this, we print the
value we’ve just pop-ed and then the state of our object.

Following the same process as we did for retrieving the last value of our object, we
can retrieve the first value of our object by utilizing the method. We call
this and instantiate our variable with it, and again print out the current state of
our object.

Output
The output from the preceding program confirms that our and work as
expected. We print out our original , , which pops the last element of our

 object from the object and prints it out onto the console.

We then call , which pops the frontmost element from our object, and
again prints it out onto the console:

$ python3.6 05_removeDeque.py
Deque: deque(['1', '2', '3', '4', '5', '6'])
6
Deque: deque(['1', '2', '3', '4', '5'])
1
Deque: deque(['2', '3', '4', '5'])

Inserting elements
Being able to populate a object is important, as without this mechanism, our
object wouldn’t be very useful.

Communication between Threads

[122]

Example
In this example, we are going to take a quick look at how you can insert elements into an
array at specific points:

Breaking it down
In the preceding code snippet, we utilize the function in order to insert the
element at position five of our object.

Output
This output of the last program shows us that it successfully inserts a to the fifth location
of our object:

$ python3.6 06_insertDeque.py
Deque: deque(['1', '2', '3', '4', '5', '6'])
Deque: deque(['1', '2', '3', '4', '5', 5, '6'])

Rotation
Deques give us the ability to rotate our object by n steps to either the right or the left
depending on whether the number passed in is positive or negative.

Communication between Threads

[123]

Example
The following example shows how we can perform rotation on our object by both a
positive and negative value to rotate all the elements both forwards and backwards:

Breaking it down
In the preceding example, we create our standard and pass in our regular one to six
values. We then print out our default , and then rotate it three places to the right.

Upon rotation, all of the elements in our object move three places to the right; the last
element in our queue becomes the first, and then the second, and subsequently, the third.

This diagram succinctly shows how we can rotate both forward and backwards using
positive and negative values:

Communication between Threads

[124]

Output
As you can see from the output of our sample application, we start off with our
object with values 1 to 6 in the correct order. We then rotate forward by three places, and all
of our elements correctly move three places forward.

We then attempt to rotate backwards by two, and again, we see that all of the elements
within our array move back two spaces correctly:

$ python3.6 08_rotateDeque.py
Deque: deque(['1', '2', '3', '4', '5', '6'])
Deque: deque(['4', '5', '6', '1', '2', '3'])
Deque deque(['6', '1', '2', '3', '4', '5'])

Defining your own thread-safe
communication structures
Sometimes, standard communication primitives don’t quite cut it, and we have to
implement our own composite objects in order to communicate between threads.

A web Crawler example
Now that we’ve got a good handle of both our communication primitives as well as the
synchronization primitives that we dealt with in the previous chapter, it’s time to start
putting these to good use.

What better way to put into practice our newfound knowledge than to build something
interesting with it?

In this section of the chapter, we are going to build a very simple multithreaded web
Crawler.

Communication between Threads

[125]

Requirements
Just like any real project, we first need to define a set of requirements. In other words, we
need to know the general direction that we’ll be working towards. For this project, we have
the following requirements:

The web Crawler needs to utilize multiple threads
It should be able to crawl all the particular web pages of a website
It should be able to report back any 404 links
It should take in a domain name from the command-line
It should avoid cyclic traversal

That last point about cyclic traversal is important--in order to prevent our program
endlessly crawling two or more pages that all interlink each other, we must track exactly
what pages we’ve already crawled. We’ll be able to leverage here one of the
synchronization primitives that we’ve learned about in the previous chapter.

Design
In our program, we are going to need a something to do our heavy lifting--this will be the
requesting of web pages and the parsing of these web pages for new links to crawl.

We’ll separate this worker out into a class that we’ll call a Crawler; this will have a few
different functions--its constructor function, a run function, and an auxiliary
function.

Our Crawler class
The first thing we want to build out in this Crawler is our Crawler class. This will contain
the static methods which will perform any crawling and enqueueing of links to the crawled
list.

At the top, we import all of the modules that we’ll need; this is a mix of things from the
 module and the module as well as so that we can

successfully make the HTTPs requests and the module. This
 module will do the bulk of our heavy lifting when it comes to parsing our

HTML for new links to crawl.

Communication between Threads

[126]

At the top of our class, we declare several variables, this first of which is which
will be used to check and see that we haven’t left the site we originally intended to crawl. If
we were to crawl say , then this would be set as , and
we would only proceed to crawl links from this domain.

Below that, we declare the context, which we’ll pass in as the context for our HTTPS
requests. And finally, we instantiate a new set called , which will be populated
with any links that throw less than favorable 200 status codes.

We then go on to declare our Crawler’s function which will set .

After this, we declare static method and static method. This takes in
a list of links and , a object. It iterates through them and if the link
has not already been crawled, and if it is not already in , then we
add it to the object.

Communication between Threads

[127]

Our starting point
The next thing we need to do is implement our file. This will be our main entry
point for our web Crawler program.

We begin by importing all the necessary modules as well as , which we’ll
be defining later on. Below our imports, we define the number of threads upon which we
want our code to execute upon. Due to the highly I/O bound nature of web Crawlers,
having multiple threads of execution allows us to perform multiple I/O-bound HTTP
requests concurrently.

Below this, we define the function, which is, essentially, a thread factory.
Next, we define our run function which will feature as the target of all the threads that we’ll
create. In this function, we constantly loop round and attempt to call the method on
our queue. If the item that we retrieve from the is , then we
terminate our thread, if not, then we crawl the URL by calling our static
function and passing in our , our URL, and the queue.

Finally, we define our main function. This first takes in the URL that we wish to crawl--in
my example, we use , but I implore you to try your own sites
and have mercy on my web server. We then instantiate an instance of our Crawler, and pass
in the that will constrain our Crawler from crawling other websites.

Communication between Threads

[128]

Finally, within our function, we call our factory function, , and
join our queue so that our program doesn’t finish execution until
everything on the queue has been processed.

Communication between Threads

[129]

Extending the queue object
In our example, we will want to utilize the atomicity of the object that we’ve covered
previously. However, we also want to extend this further, as we’ll need to check if a new-
found link has already been crawled, and also that it isn’t enqueued to be crawled again in
the future.

So, in the preceding example, we import the module, and then go on to define our
 object that inherits from .

Below this, we define the method, which will take in an item, and, utilizing
a mutex, will safely traverse the queue to check whether or not the passed-in item exists in
that queue.

We also define the function, which simply returns the length of our queue. This is
not that vital, but it can give us a nice indication as to how much work our Crawler has yet
to do at various points throughout our program.

Upon running our Crawler program and inputting , our
program then goes off and works through each and every page of that
it can find.

Every time a new page is found, it is added to our object,
and a thread then proceeds to pick it up and index it. We then print the status of our
Crawler every time it makes a request indicating the URL that we’ve crawled, the HTTP
status that was returned, and finally, how many pages we’ve crawled in total.

$ python3.6 main.py
Website > https://tutorialedge.net
Url https://tutorialedge.net Crawled with Status: 200 : 1 Crawled In Total

Communication between Threads

[130]

Url https://tutorialedge.net/series/blog/ Crawled with Status: 200 : 2
Crawled In Total
Url
https://tutorialedge.net/post/webdev/difference-between-class-id-selector-c
ss/ Crawled with Status:
200 : 3 Crawled In Total
….
Url https://tutorialedge.net/page/9/ Crawled with Status: 200 : 216 Crawled
In Total
Url https://tutorialedge.net/page/10/ Crawled with Status: 200 : 217
Crawled In Total
Url https://tutorialedge.net/page/11/ Crawled with Status: 200 : 218
Crawled In Total
Total Links Crawled: 218
Total Errors: 11

Future enhancements
This was just an example of a relatively simple website Crawler that could be improved in
quite a number of different ways. You could expand this into a full-blown web spider that
indexes everything it can, or you could use this to constantly monitor the health of your
sites.

One of the best ways you could, potentially, improve this is by wrapping an API around it
so that you could run this constantly on a server and test multiple websites through a web
interface.

Conclusion
Hopefully, this gave you some idea of how you can construct more and more complex
programs using some of the primitives and concepts that we’ve learned about in the last
few chapters.

In this example, we were able to construct a multithreaded website Crawler that was able to
determine the health of all the linked content on a given site. It takes in a single URL as a
starting point, parses it for every link within that page, and then proceeds to parse those. It
continues to do that until it has scanned every linked page on your website.

Communication between Threads

[131]

We’ve touched upon a few topics within this example, such as the following:

Multiple threads improving the performance of our I/O-bound application: By
utilizing multiple threads, we were able to request multiple website pages
concurrently.
Communication between multiple threads: In this example, we utilized both
Queues and Sets in order to obtain thread-safe communication. We utilized a
queue object for storing all of the URLs that we wanted to parse, and sets in order
to store the links that we parsed.

Exercise - testing your skills
As a means of testing your new-found thread communication skills, I would suggest trying
to add some of the new functionality to the web Crawler, similar to what we talked about in
the future enhancements section. One of the best ways to improve your skills when it comes
to thread-safety is, in my opinion, to get your hands dirty and dive deeper into ever more
complex problems.

Or, if this doesn't tickle your fancy, then there are a number of different applications that
you could potentially try your hand at building.

Web Server: You could try to build your own web server that is able to handle more than
one connection at a time. This poses an interesting challenge, and is quite rewarding, as it
gives you a little bit of insight into how some of the bigger Python frameworks have come
to be.

Summary
In this chapter, we looked at quite a number of different mechanisms that we can employ
when it comes to implementing communication in our multithreaded systems. We took a
deep dive into the thread-safe queue primitives that Python features natively, and how we
can implement solutions around these primitives that we can be confident with.

In the last section, we pulled all of the concepts that we covered in the previous two
chapters together, and created a useful tool for checking the health of all the links on a given
website.

In the next chapter, we’ll look in depth at the various debugging and benchmarking
techniques that one can use in order to ensure that their systems are production ready and
bug free.

66
Debug and Benchmark

Programming is never just about crafting a solution to a problem and leaving it once it’s
reached a somewhat finished state. More often than not, it’s also about maintaining the
existing solutions so that businesses can continue to run and make money. Maintaining
these existing solutions, typically, means doing things like debugging and adding new
features, and in order to do these things, it’s important to have a working knowledge of
some of the tools that exist within the Python ecosystem.

In this chapter, we’ll be looking at the various testing strategies we can follow in order to
ensure that we can continue to add new features and perform refactoring of our code with
minimal risk to the existing features.

We’ll also be diving deep into some of the tools available that allow us to gain a better
understanding of our Python applications at a far more granular level. To that end, in this
chapter, we'll be covering the following topics:

Test strategies for your code
The Python debugger
Pdb
The tool.
The tool

By the end of this chapter, you should have an appreciation of the value of testing your
systems as well as a handle on how you can perform your own benchmarking and
profiling. Let's get started by looking at some testing strategies we can use to improve our
code.

Debug and Benchmark

[133]

Testing strategies
While this chapter might be titled Debugging and Benchmarking, I’ve often found that one of
the best ways to debug your codebases is to build up a range of integration tests that cover
as much of your codebase as is practical. We'll begin by looking at the main reason as to
why we test our code bases.

Why do we test?
So, we’ve gotten roughly halfway through this book, and not once have we defined any sort
of tests, or ensured that the programs that we have written are verifiably correct. Up until
this point, you’ve taken my word that the programs I have shown you do everything that
I’ve said they do. But how can we guarantee that they give us the same results every time
regardless of how many changes we make to them?

This is where your testing strategy comes into play.

In professional software development, testing your software to try and limit the bugs is one
of the most important things you can do. All great software developers implement a decent
testing strategy surrounding the systems they build, and this, actually, enables them to
make changes faster and with more confidence.

Say we had a legacy system that had 100,000 lines of code, and had no test suite and no
testing strategy implemented. How would you test that what you were doing wasn’t
breaking something further down the chain? How could you confidently say that a code
change you implemented wasn’t going to bring down X, Y, and Z other applications in
production, and, potentially, cost your business money? The answer is it’s next to
impossible; every change you make will make you nervous when the change is deployed,
and you’ll be on support for potentially catastrophic breaks 24x7.

Conversely, say you were in charge of developing a new feature on a legacy system that has
100,000 lines of code. If you made any changes to specific parts of the code base, the suite of
tests that your team has built up would catch any potentially catastrophic breaks, and you
would be confident that this new feature would be able to go into production without
impacting anything existing. This is a huge advantage for development teams that follow an
agile methodology, and iteratively implements lots of changes to their software systems. It
also means that the chance for your business to be impacted by an issue in production is far
lower, and you don’t have to worry about being on support all the time.

Debug and Benchmark

[134]

Testing concurrent software systems
One of the most important things to take away from this book is that you need to ensure
that all of your concurrent programs are tested and proven to be valid before you
implement multiple threads. If you have a single-threaded application that has a bug, and
you add multiple threads to that application, you now have multiple bugs and your life
becomes a hell of a lot more complex.

All software systems should be designed in a way that ensures their correctness before any
optimizations are implemented.

What should we test?
Now that you have some appreciation as to why we should test, it’s important to know
exactly what you should and shouldn’t be testing. One metric I’ve often seen used as a
quality sticker is code coverage. This, essentially, boils down to how many lines of code
your tests hit, and I've seen people boost this metric by writing almost pointless tests like
testing getters and setters on your Python objects. This is something which I would
absolutely avoid, as it provides no real value to your system.

Instead of focusing on a metric like code coverage, you should, instead, be focusing on
testing only the most important parts of your code, and then expand your tests to include
your less important parts later on. In your typical project environment, trying to test
everything could drastically decrease the time taken to reach the market, so, you need to try
and come up with a blend of testing that does just enough to ensure platform stability while
also meeting business demands.

I would recommend trying to come up with a multitude of different tests that push your
software to the limit. Intentionally try and break your logic, and ensure that the majority of
it is up to scratch.

Unit tests
A unit test can be defined as a programmatic test that tests a single logical unit of your code.
When we say unit, we, typically, mean a function within our codebase.

When it comes to writing unit tests in Python, typically, the first thing to come to mind is
the module that is included by default in Python 3.6.

Debug and Benchmark

[135]

PyUnit
PyUnit is to Python what JUnit is to Java. It’s the standard unit testing module that
provides, basically, everything you need in order to define an automated testing strategy.

The first thing we need to do within our test program is to import the module.
This will contain everything we need in order to test our simple function.

Below this import, we define our , which takes in a single argument and
increments it by one. Nothing overly complex, I’m sure you’ll agree, but the key point here
is that if other parts of our codebase start to rely on the output of this function, then we
need to have some form of a checking mechanism to ensure we don’t break everything if we
make some changes.

In the function code given next, we define our class which inherits
from . Within this, we define our and functions.
These will run before and after all of the tests in our test suite.

Finally, we kick off this newly defined, but somewhat barebones, test suite by calling
.

Debug and Benchmark

[136]

If we were to run the preceding program, we will see that our function executes first,
followed swiftly by our single test case, and finally, we see our function
executing.

It then prints out how many tests were run, how long these tests took, and finally, an
overall status:

$ python3.6 00_unittest.py
This is run before all of our tests have a chance to execute
Testing that our function works with positive tests
This is executed after all of our tests have completed
.
--
Ran 1 test in 0.000s

OK

Expanding our test suite
So, in the previous section, we looked at how we could test a very simple function with a
few positive tests. This has told us that one path in our code works the way we intended,
which is good; however, it could be far better.

In our current situation, we have no idea how our code will handle, say, a string input, a
negative value, or an object.

One of the most popular trends for writing stable production-ready code these days is to,
actually, define a range of failing tests before you’ve written any of your code. This is called
test-driven development, and it could save you a hell of a lot of time further down the road
when it comes to finding bugs and making changes with confidence.

The idea behind test-driven development is that you start by writing failing tests that
accurately test how your system should work. You then write your code until you have a
set of passing tests.

Unit testing concurrent code
Unfortunately, when it comes to unit testing concurrent code, there is no silver bullet
solution that will work for everything. You'll have to use your own discretion in order to
come up with a strategy, or strategies, that will work for the systems that you are
developing.

Debug and Benchmark

[137]

You will likely never be able to test every possible scenario of your codebase if you
introduce multiple threads. Ideally, you should try to follow a blend of different strategies
like these:

Unit test the parts of your code that don't run on multiple threads.
Create a test suite that probes your multithreaded code in a variety of different
ways. If possible, try and include load tests on these specific sections of code to
give you confidence that your multithreaded logic stands up to constant
pressure.

There are, of course, more strategies that you can follow, but adequately testing your
codebase is a complex blend of both science and art that hugely depends on what you are
developing and the complexities of your system.

One rule of thumb I would tend to agree with is that if your code is so complex that testing
becomes near impossible, then it could be time to rethink your initial approach, and come
up with a simpler design. This isn't always possible, but it is something I would actively
recommend you do if you have the time and resources available to do so.

Integration tests
While unit tests represent tests that ensure the correctness of a single unit of your code,
integration tests are used to ensure the correctness of multiple sections of code or different
parts of your systems.

Integration tests are a lot more complex in nature, but the reward for doing them is that you
know your system works well as a piece of a bigger puzzle. Like your unit tests, integration
tests give you that extra bit of insight to see how your system will run when synced up with
everything else.

Integration tests could be a complete chapter on their own, but, unfortunately, they are
somewhat outside the remit of this book. I do, however, encourage you to research different
integration testing strategies, as they can help to ensure that your code is less likely to
contain errors, and with a good integration testing strategy, the art of debugging becomes a
lot easier for developers.

Debug and Benchmark

[138]

Debugging
Being able to debug your code is a key skill that any software developer must be able to do.
As our systems grow ever more complex, the potential for bugs within our code grows
exponentially, and knowing the best practices for debugging in certain scenarios could save
you a substantial amount of time.

The techniques I’ll be showing you next will work for both single-threaded and
multithreaded applications. For brevity, I’ll only be demonstrating these techniques on
simple, single-threaded applications, but I implore you to try and become as familiar with
these tools as possible, and practice using them in multithreaded scenarios.

Make it work as a single thread
Imagine you were writing a new AI-based system that would drastically improve the sales
that your website makes, or be able to place trades that would make you a multi-millionaire
overnight. You’ve spent months working on this system, and you are very close to cracking
it and making it work perfectly, but you think it’s running very slowly. This could be
because it’s running through millions of calculations per second in order to crank out
accurate predictions.

You may think, in this scenario, that you could optimize the code based off some of the
previous examples in this book we’ve given. You start to add multiple processes to handle
the number crunching more effectively, and see some noticeable improvements in the
speed.

However, you’ve not yet cracked the final problem, and, suddenly, you see that following
the logical flow of your system is exponentially harder. You have to follow the flow across
multiple threads and processes, and could, potentially, have introduced more bugs into
your system.

The moral of this theoretical story is to ensure that you get your applications fully working
in a deterministic manner before you set about increasing the complexity of the codebase,
and try to optimize things. Single-threaded programs are far easier to debug and work
through, and catching logical errors at this stage is far easier than trying to debug a system
that’s running across multiple threads in a non-deterministic manner.

Debug and Benchmark

[139]

However, sometimes, this may not be possible--you could be trying to debug a system that
has already been in production for months or even years before these bugs rear their ugly
heads. In this case, you’ll have to utilize some of the following tools in order to debug these
complex systems.

Again, I will point you to the talk done by Raymond Hettinger at PyCon. He eloquently
goes over some of the reasons why you should get things working in a single-threaded
manner before adding concurrency, and overall, the talk is excellent. You can watch it at

.

Pdb
Pdb or the Python Debugger is the standard debugger included in Python. It’s an excellent
fallback tool for when the more standard methods of debugging are found to be lacking.
Pdb gives you complete control, and allows you to check the values of variables at runtime,
and perform other very handy tasks, such as stepping through code and setting
breakpoints.

With Pdb, we can do either postmortem debugging, which can be done through the
command-line, or we can interactively run our Pdb. If we were to work through our script
using the interactive command-line, then we’ll need to familiarize ourselves with a series of
commands such as the following:

l (list)
n (next)
c (continue)
s (step)
r (return)
b (break)
Python

If you ever forget these commands, then you can simply type while running Pdb, and you
should see a table of all the commands available to you. Quite a number of these will be
duplicates, so don’t feel overwhelmed by the number of commands it presents to you:

Debug and Benchmark

[140]

An interactive example
Say, we wanted to start debugging this following script, and see what the values of certain
variables are during runtime. In order to do this, we could utilize the following line in order
to set a breakpoint within our code:

By setting this, we can then execute our program normally, and it will execute up until the
point that this line has been set. Upon reaching this line, the Pdb interactive terminal will
start up, and we’ll be able to utilize the various commands outlined previously in order to
debug the current state of our program.

Let’s try executing this preceding script now. You should see that upon execution, the Pdb
kicks in and our code breaks at the point that we placed our function. In the
preceding program, we put the function call on line 12 of our code, so you
should see that the code breaks at line 13. In order to see the current code that we are
executing, type or into (Pdb), and you should see all the code surrounding our
current line of execution.

The current line that we are executing can be determined by the arrow that features next
to the line number.

$ python3.6 04_timeitContext.py
> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py(13)myFunction()

Debug and Benchmark

[141]

-> req = Request('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})
(Pdb) l
 8 myssl = ssl.create_default_context();
 9 myssl.check_hostname=False
10 myssl.verify_mode=ssl.CERT_NONE
11 with Timer() as t:
12 import pdb; pdb.set_trace()
13 -> req = Request('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})
14 response = urlopen(req, context=myssl)
15
16 print("Elapsed Time: {} seconds".format(t.elapsed_secs))
17
18

If we then wanted to try and check on, say, the value of our response object, we could
continue the execution of our code until the next line using the command. This then takes
us to .

In order to obtain the value of our response object, we’ll have to run this line again using
the command, and then we’ll be able to do which prints out our
response object. We can then treat the object as if we were inside our script, and call it’s

 function in order to see what the value of the URL is at runtime.

$ python3.6 04_timeitContext.py
> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py(13)myFunction()
-> req = Request('https://tutorialedge.net', headers={'User-Agent':
'Mozilla/5.0'})
(Pdb) n
> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py(14)myFunction()
-> response = urlopen(req, context=myssl)
(Pdb) n
> /Users/elliotforbes/Projects/Python/Chapter
06/04_timeitContext.py(16)myFunction()
-> print("Elapsed Time: {} seconds".format(t.elapsed_secs))
(Pdb) print(response)
<http.client.HTTPResponse object at 0x1031e2588>
(Pdb) print(response.geturl())
https://tutorialedge.net

Debug and Benchmark

[142]

While I was still learning the language, I would constantly rerun applications after
modifications in order to try and achieve the results I wanted. However, as the programs I
worked on became bigger and took longer to execute, this simple method of debugging was
no longer sufficient.

Through learning about these excellent debugging methods, I was able to drastically
improve the speed at which I found errors, and subsequently, the speed at which I was able
to fix them, so, I would encourage you to spend a lot of time combing the documentation
and practice using the Pdb.

Official documentation
Before we go any further, I implore you to take a look at the official
documentation of Pdb for Python 3.6, as it’ll show you all the different
commands you can utilize in your debugging adventures. That
documentation can be found at

Catching exceptions in child threads
An important point to consider when writing multithreaded applications is how do we
handle any exceptions thrown in child threads? We looked at cross-thread communication
in the previous chapter, so a logical method for catching and communicating exceptions
between child and parent threads could be to use one or more of the techniques we have
already discussed.

In this next code sample, we'll look at exactly how you can communicate any exceptions
thrown from a child thread to the parent thread. We'll be utilizing the sys module to extract
the information we need about the exception, and then place this within the confines of our
thread-safe queue primitive:

Debug and Benchmark

[143]

When you run this preceding Python program, you'll see that the child thread throws an
error two seconds after it starts; this error is put into the thread-safe queue object which our
parent thread then reads from. We are then able to handle the exception in any way we
wish within our parent thread.

[20:22:31] ~/Projects/Python/Chapter 06 master�
 $ python3.6 07_threadException.py
(<class 'Exception'>, Exception('Exception Thrown In Child Thread
<Thread(Thread-1, started 123145552101376)>',), <traceback object at
0x102320548>)

Benchmarking
When we talk about benchmarking our code, we are talking about measuring how quickly
it can perform one complete operation. For instance, take the web crawler that we built in
the last chapter--if we benchmarked this program, we would typically measure the number
of pages we could index per second.

When doing performance optimizations, we take a starting benchmark that represents the
current state of our program as a whole, and then use a combination of micro
benchmarking and profiling in order to optimize these programs and achieve higher
throughput.

Debug and Benchmark

[144]

Micro benchmarking is, essentially, decomposing our application into a series of steps, and
then, benchmarking each of these steps individually in order to determine the bottlenecks
within our code. We break, what is essentially a hard problem to optimize as a whole, into a
series of smaller problems that become easier to optimize and tune.

So, how can we perform benchmarks upon our code? Well, thankfully, we have a number
of different options that we can leverage, which come as part of Python.

The timeit module
The module in Python happens to be one such tool that we can utilize. Python, by
default, comes with this module which provides an excellent way to measure the
performance of small bits of Python code within your main application.

The module gives us the flexibility to either have our benchmarks included within
our codebase, or, conversely, we can call it through the command-line and feed in sections
of code that we wish to time.

The official documentation for the module can be found at

The first method of using the module that we’ll cover will be through the
command-line interface.

Debug and Benchmark

[145]

Timeit versus time
It’s worthwhile to note that there are a number of advantages when using the
module as opposed to the time module. is specifically designed to obtain far more
accurate measurements of time as opposed to the time module.

With , we can tell our programs to run things multiple times, and then give us a
precise measurement that is far less likely to be impacted by extraneous factors within our
OS, which we have no direct control over.

Command-line example
To quickly come to grips with the command-line module, I suggest that you try
profiling some of the code that we’ve previously featured within this book. The multitude
of samples that are available in the Concurrency with Python GitHub repo can give us a
detailed spread of how fast or slow each of the different concurrency concepts we’ve
covered truly is.

Importing timeit into your code
This next sample will cover a very simple way we can utilize the module to
measure the time taken to execute two distinct functions:

Debug and Benchmark

[146]

The preceding code takes a start, then executes each function, and then records an end time
before printing the precise difference between the two times.

It should be noted that while we’ve managed to measure the time taken for each function,
we’ve not actually utilized the module to its full potential.

In the last code, we instantiate two objects, each taking in the function that they are
going to be timing as well as the imports needed in order to run them within .

We then call on these two objects, passing in to determine
how many times we want to time our code, and to determine how many times
we want to run these tests.

Executing the preceding code should provide the following output:

$ python3.6 timeitCode.py
Function 1 Executing
Function 1 complete
Function 1 Executing
Function 1 complete
3.002750840038061 Seconds:
3.0001289139618166 Seconds:
Function 2 executing
Function 2 complete

Debug and Benchmark

[147]

Function 2 executing
Function 2 complete
2.0005433409824036 Seconds:
2.00145923596574 Seconds:

Utilizing decorators
Sometimes, however, manually inserting the last code can be somewhat of an overkill, and
may end up bloating your codebase when it’s unnecessary. Thankfully, Python offers a
solution to this.

We can define our own function, which will automatically wrap our function’s
execution with two calls to . We’ll then retrieve the differences
between these two calls and display this on the console.

This preceding code will print out any function we pass into it with the exact time it took to
run it. When you run it, you should see the following output on the console:

Debug and Benchmark

[148]

Timing context manager
Context managers are objects that define the runtime context to be established when
executing a statement.

In Python, we can define our own context manager object, which we can then use in
order to time specific sections of our code without too detrimental an impact on our
codebase.

This time, the context manager object will look something this:

We define a class which features a constructor, an entry point, and an exit point.
Upon entry, we start the , and upon exit, we calculate the elapsed time.

We can then utilize this class like this within our Python programs:

Debug and Benchmark

[149]

Output
If we were to execute the preceding code, then you should see that it executes and then
prints out the total elapsed time taken for the request as follows:

$ python3.6 04_timeitContext.py
Elapsed Time: 0.5995572790270671 seconds

Profiling
When we talk about profiling our code, what we intend to do is measure some key
attributes about our programs, such as how much memory they use, the time complexity of
our programs, or the usage of particular instructions. It’s a vital tool in a programmer’s
arsenal when it comes to squeezing the highest performance out of their systems.

Profiling, typically, uses a technique called Dynamic program analysis to achieve its
measurements, and this involves running our programs on a real or virtual processor. The
technique goes all the way back to IBM/360 and IBM/370 platforms in the early 1970s.

cProfile
cProfile is a C-based module that comes as part of Python as standard. We can use it to
understand the following characteristics of our code:

 This is the number of times a line/function is called throughout the
execution of our program.

: This is the total time that the line or function took to execute.
: This is the total time divided by the number of calls.
: This is the cumulative time spent executing this line or function.
: This is the quotient of divided by the number of primitive

calls.
: (function): This represents the actual line or function that we

are measuring.

Let’s take a quick look at how we can utilize the module in order to attain these
attributes on some of our previous Python samples.

Debug and Benchmark

[150]

Simple profile example
For this example, I’m going to use a program from the previous chapter, which showed us
how to append things to a double-ended queue. It’s a rather simplistic script which doesn’t
do a hell of a lot, so, it’s perfect for showing you the results without too much noise.

When we call on the preceding program, it should first run through the entire
program for us and display the output on the console before displaying the tabled stats that
it’s recorded for this particular bit of code.

Debug and Benchmark

[151]

As you can see, the preceding code takes next to no time to execute. We can see from this
that the method and were called a grand total of once each, and that
they took a miniscule amount of time to execute. You can also see on the last line of our
table that we called the function thrice, and that it again took a minimal amount of
time.

Let’s see what happens if we try using the cProfile on a slightly more advanced program
like this:

If we were to execute on the last program, which doesn’t look too mind
bogglingly complex compared to our first program, then you should see a far bigger table
rendered out to your console.

For this particular example, the output is far more insightful, and gives us an indication of
where some of the slowdowns occur within our codebase so that we can further optimize
and improve these speeds.

Debug and Benchmark

[152]

You should notice that the number of function calls in the preceding output is exponentially
higher than that of our first program--a staggering 5157 function calls as opposed to 10.

This should give you some indication as to how drastically the performance of two
programs can differ, and the sheer magnitude of the work that goes on in the background
without our knowledge. , and other tools like this, give us an incredibly
important insight into the inner workings of our systems, and arming ourselves with this
knowledge allows us to actively start improving performances across all of our systems.

The line_profiler tool
Using the traditional methods of wrapping every line with a time calculation can, at times,
be unrealistic, as the number of lines in your functions may be quite substantial.
Fortunately, there are tools available to us that automate this task, and allow us to obtain
that finer-grained analysis of our codebase that could lead us to spot potential hotspots.

The is one such tool that allows us to do line-by-line analysis of how long
our programs take to execute. This saves us from doing the standard time calculations
around every line of our code. Unfortunately, this doesn’t come as standard with Python,
but it’s easily attainable through our friend pip.

In order to install the tool with pip, run the following line:

pip install line_profiler

If you are interested in seeing how this tool works, then the good news is
that the tool is open source. You can find the complete
codebase for this tool at

Kernprof
Kernprof comes with the tool, by default, and allows us to easily get
started using the tool. With , we need to explicitly state
the functions that we need to profile within our codebase. This is typically done using the

 decorator.

For the purpose of this example, let’s create a very simple program that features two
functions, a slow function and a fast function. We somewhat suspect that
might be the one that is causing our program to be inefficient, and due to its colossal size,
we are unable to wrap every line of it with a time calculation.

Debug and Benchmark

[153]

If we wanted a line-by-line analysis of exactly how long everything takes, then we can add
the decorator in order to see what has gone wrong, as follows:

In order to run our tool, we first have to call the tool in order to generate an
 file. It’s this file that we’ve just generated that we’ll be passing into our

 tool in order to see the exact output.

$ python3.6 -m kernprof -l profileTest.py
Slow Function Executed
Fast Function Executed
Wrote profile results to profileTest.py.lprof

$ python3.6 -m line_profiler profileTest.py.lprof
Timer unit: 1e-06 s

Total time: 3.00152 s
File: profileTest.py
Function: slowFunction at line 4

Line # Hits Time Per Hit % Time Line Contents
==
 4 @profile
 5 def slowFunction():
 6 1 3001412 3001412.0 100.0
time.sleep(random.randint(1,5))
 7 1 106 106.0 0.0 print("Slow Function
Executed")

Debug and Benchmark

[154]

As you can see, we first run our , which runs through our program, and
successfully generates our file. We then pass this file into our

 tool, and it outputs a table that features the line numbers of the code we’ve
executed, the number of times that line was hit, and the time per hit.

As you can see, line 6 was deemed to have taken up 100.0 percent of the time rounded up. It
took just slightly over 3 seconds, and has crippled the execution time of our program.
Armed with this knowledge, we can try to refactor our app to possibly remove this
unnecessary line, and greatly improve the speed at which our program executes.

Memory profiling
Being able to profile your program's memory usage is yet another key skill that most senior
developers will need in order to effectively debug issues with their systems. I’ve often seen
developers pay little or no attention to the limitations of the hardware that they are
developing on--I’ve also been one of the biggest perpetrators of this heinous crime.

I’ve loaded a server with a instance along with multiple heavy JVM-based systems
as well as multiple cron jobs and whatever else I could fit in there, and seen it all come
tumbling down after one particularly memory hungry program gobbled up all of the
remaining memory available on that server. The main cause of the issue? I’d not paid
attention to appropriate garbage collection within one of my applications, and over time it
started throwing exceptions and dying on me slowly.

It was only once I’d been burned by this kind of issue that I started to seriously analyze the
memory usage of the programs that I create. Within the Python ecosystem, we have a tool
aptly called , which, very much like our , generates
informative tables based on the memory usage of each of the lines of our explicitly chosen
functions.

In order to install the memory profiler, run the following command:

pip install -U memory_profiler

Again, we’ll take the following program as our test bed:

Debug and Benchmark

[155]

Thankfully, we are able to reuse the annotation when it comes to memory
profiling our slower function. In order to perform a memory profile, we can execute this:

$ python3.6 -m memory_profiler profileTest.py

Upon execution of this, you should then see a table, much the same layout as our
 display in the console. This gives us the line numbers of the code that we

are actively profiling, their associated memory usage, and the amount by which memory
usage incremented when executing that line.

As you can see, our slowFunction in this particular program isn’t exactly too demanding on
our system, and thus, no real action needs to be taken.

Line # Mem usage Increment Line Contents
==
 4 33.766 MiB 0.000 MiB @profile
 5 def slowFunction():
 6 33.777 MiB 0.012 MiB time.sleep(random.randint(1,5))
 7 33.785 MiB 0.008 MiB print("Slow Function Executed")

Memory profile graphs
If you want to be able to view your memory usage over a set period of time, then there is
the option of using the mprof tool that comes with . The mprof tool takes
a series of memory usage samples at a 0.1-second intervals, and then plots this usage into a
series of files.

Debug and Benchmark

[156]

These files can then be used in conjunction with in order to show the
memory usage of your program over a set period of time.

python -m pip install matplotlib

Now, if you are like me, and you have multiple versions of Python installed on your
machine, you might find it a little tricky to get to work. I’m working off macOS, and
managed to run using the following command:

$ python3.6 /Library/Frameworks/Python.framework/Versions/3.6/bin/mprof run
profileTest.py

This was run against the following code that we’ve used previously except without the
 decoration on our :

Debug and Benchmark

[157]

Upon completion, we can then run the following command in order to plot our memory
usage over time:

$ python3.6 /Library/Frameworks/Python.framework/Versions/3.6/bin/mprof
plot

For a very simple program like the preceding one, the graph outputted is somewhat basic,
but still, it’s a good, simple demonstration for us to pick apart.

On the y-axis, we have the total memory used measured (in MiB), and on the x-axis, we
have the time (in seconds). With longer running programs, you should see far more
interesting variations in the total memory used, and it should stand you in good stead for
trying to identify any memory issues you face further down the line.

Debug and Benchmark

[158]

Summary
In this chapter, we took a comprehensive look at some of the techniques that you can utilize
in order to ensure your concurrent Python systems are as free as practically possible from
bugs before they plague your production environment. We covered testing strategies that
help to ensure the soundness of your code’s logic, and provide you with that extra peace of
mind when bug fixing.

We then looked at the various ways that you can debug your Python codebase, touching
upon the inbuilt Pdb, and how you can interactively use that in the command-line.

Finally, we looked at the various techniques that you can employ in order to benchmark
and profile your Python applications, and ensure that they are as efficient as possible.

In the next chapter, we are going to look at Python’s Asyncio library, and explain how we
can utilize executors and pools in order to improve the performance of our Python
applications.

77
Executors and Pools

In this chapter, we will look in depth at concepts such as Thread pools and Process pools,
and how we can work with Python’s implementation of these concepts in order to speed up
the execution of our programs.

We’ll be looking at the following topics in some detail:

Concurrent Futures
Future Objects
Process Pool Executors

We’ll also continue with our progress on the website crawler that we created in ,
Communication between Threads, by adding functionality, such as writing the results to a CSV
file and refactoring our code, to use the new techniques you’ll be learning about in more
detail within this chapter.

By the end of this chapter, you should have an appreciation as to how we can improve the
performance of our Python program by leveraging executor objects as well as how they can
help to simplify the amount of work we have to do with regard to handling threads and
processes.

Concurrent futures
Concurrent futures are a new feature added to Python in version 3.2. If you come from a
Java-based background, then you may be familiar with . Well,
concurrent futures are Python’s implementation of this concept.

Executors and Pools

[160]

When it comes to running multithreaded tasks, one of the most computationally expensive
tasks is starting up threads. get around this problem by creating a
pool of threads that will live as long as we need them to. We no longer have to create and
run a thread to perform a task and continue to do this for every task we require; we can,
instead, just create a thread once, and then constantly feed it new jobs to do.

A good way to think about this is to imagine you were in an office that had numerous
workers. We wouldn’t hire an employee, train them up, and then allocate one and only one
job to them before firing them. We would, instead, only incur this expensive process of
training them up once, and then allocate them numerous jobs throughout the term of their
employment, and thus, achieve greater efficiency.

This is analogous to our thread pool. We hire a number of threads once, and incur the cost
of creating them once before delegating them numerous tasks throughout their lifespan.

Executor objects
The Executor class falls within the module, and provides us with
the ability to execute a number of different calls in a concurrent fashion. It can be used in a
number of different ways, such as by itself or as a context manager, and it can drastically
improve the legibility of our code by handling tedious tasks such as thread creation, start,
and joining, all in one go.

Creating a ThreadPoolExecutor
The first step we need to know is how to define our own . This is a
rather simple one-liner, which looks something like this:

In the preceding command, we instantiate an instance of our , and
pass in the maximum number of workers that we want it to have. In this case, we’ve
defined it as , which, essentially, means that this thread pool will only have three
concurrent threads that can process any jobs that we submit to it.

In order to give the threads within our something to do, we can call
the function, which takes in a function as its primary parameter like this:

Executors and Pools

[161]

In this example, we'll put together both the creation of our object
and the submission of tasks to this newly instantiated object. We’ll have a very simple task
function that will simply sum up the numbers from 0 to 9, and then print out the result. Not
the most cutting edge software, I’m sure you’ll agree, but it serves as a fairly adequate
example.

Following we defined the function, we have our standard function. It’s within
this that we define our object in a similar fashion to the aforementioned before
then submitting two tasks to this new pool of threads:

If we were to execute the preceding Python program, we would see the rather bland output
of both our tasks being executed, and the result of our computation being printed out on the
command-line.

Executors and Pools

[162]

We then utilize the function in order to determine which
thread has performed this task. You will see that the two values given as outputs are
distinct daemon threads.

$ python3.6 05_threadPool.py
Executing our Task
I: 45
Executing our Task
I: 45
Task Executed <Thread(<concurrent.futures.thread.ThreadPoolExecutor object
at 0x102abf358>_1, started daemon 123145333858304)>
Task Executed <Thread(<concurrent.futures.thread.ThreadPoolExecutor object
at 0x102abf358>_0, started daemon 123145328603136)>

Context manager
The second, and possibly the most popular, method of instantiating
is to use it as a context manager as follows:

The preceding method does much the same job as the previous method we looked at, but,
syntactically, it looks better and can be advantageous to us as developers in certain
scenarios.

Context managers, if you haven’t encountered them before, are an incredibly powerful
concept with Python that allow us to write more syntactically beautiful code.

This time, we’ll define a different task that takes in a variable as input just to give you a
simple demonstration of how we can do this. The function just prints out that it’s
processing ‘n’, and nothing more.

Within our main function, we utilize our as a context manager, and
then call three times in order to give our
thread pool something to do:

Executors and Pools

[163]

When we execute the last program, you will see that it prints out that we are starting out
 before going on to execute the three distinct tasks we submit to it,

and then, finally, prints out that all tasks are complete:

$ python3.6 01_threadPoolExe.py
Starting ThreadPoolExecutor
Processing 2
Processing 3
Processing 4
All tasks complete

Maps
Maps in Python allow us to do cool things such as apply a certain function to every element
within :

Thankfully, within Python, we can actually map all the elements of an iterator to a function,
and submit these as independent jobs to our :

This, essentially, saves us from doing something far more verbose like the following
example:

Executors and Pools

[164]

In this example, we’ll use this new map function in order to apply our
function to every value in our values array:

As you can see, when we execute this preceding program on our computer, it does exactly
what we expected it to, and prints out all of the multiplied results in our array after our
function has finished computing them:

$ python3.6 03_threadPoolMap.py
4
6
8
10
12
14
16

Shutdown of executor objects
Being able to shut down your executor objects in a graceful manner can be quite important
in a number of different situations. It gives you that added bit of flexibility when you may
need it the most.

Executors and Pools

[165]

When we shut down an executor object, what we are essentially doing is saying that it can’t
accept any further tasks. The tasks that were already underway by the executor object will
still be finished after the call to shut down, but trying to submit any further tasks to the said
executor object will result in an error being thrown.

In this example, we are going to demonstrate a shutdown of a running executor. We’ll first
define a function which will essentially "work" for n number of seconds. We’ll submit a
number of tasks, and then call the shutdown method on our executor. After this point, we
will attempt to submit yet more tasks to the executor:

If we were to run the preceding Python program, we will see that both task 1 and task 2 are
successfully picked up and executed by our . After our call to

, we should then see that a stack trace is printed out in
our console, as our executor object does not accept any further tasks.

Executors and Pools

[166]

In this example, we don’t attempt to handle the exception in any way, and our program
fails rather ungracefully. It’s important to note that if you start implementing features like
shutdown in order to handle certain events, then you should also implement some form of
exception handling:

$ python3.6 11_shutdownExecutor.py
Executing Task 1
Executing Task 2
Task 1 Finished Executing
Task 2 Finished Executing
.. stack trace removed for brevity
RuntimeError: cannot schedule new futures after shutdown
FAIL

Future objects
Future objects are instantiated whenever we submit a task to an executor, such as how we
submitted tasks to in previous examples within this chapter. Future
objects are objects that will, eventually, be given a value sometime in the future.

Methods in future objects
The future objects have the following methods with which we can access and modify them.
Each of these methods will be covered in a full code sample further on in the chapter.

The result() method
The method gives us any returned values from the future object. This
method can be called like this:

By specifying the parameter, we, basically, put a time limit on our future object. If
the future object fails to complete in the given time frame, then a .
The error is raised. This is quite useful, as it gives us more control in terms of
capping the amount of time erroneous threads can execute for, and limiting the damage
they can do to our program's performance.

Executors and Pools

[167]

The add_done_callback() method
When dealing with futures, we can specify a callback function which will be executed at the
point of the future's completion. This saves us from tracking the state of all of our future
objects, and simplifies our code. We can add callbacks to our future objects by utilizing the

 method.

The .running() method
If, at some point in time within your Python program, you need to determine if x future
object is currently executing, then you can call the method in order to check its
current status:

This last method will return either true or false depending on the current running status of
our future object.

The cancel() method
The method attempts to cancel a future object, and can only be called before the
point at which the future object commences execution:

The .exception() method
We can retrieve any exceptions thrown by futures using the function. By
specifying the parameter, we can, essentially, dictate that if this future does not
complete in x seconds, then throw a .

The .done() method
The method returns either true or false depending on whether the future object
has successfully completed or been cancelled:

Executors and Pools

[168]

Unit testing future objects
Unit testing concurrent applications can be a somewhat difficult task, but thankfully, the

. The object comes with the following three methods that are
designed explicitly for the purpose of unit testing.

The set_running_or_notify_cancel() method
The method is utilized to mock a future completing or
being cancelled:

The set_result() method
The aptly named method can set the result of a future object within your
unit tests. This can be used in a variety of situations such as mocking the output of your
executors.

It’s intended to be used in situations where we don’t necessarily want to test the logic
behind our future objects, but the logic of what happens after these future objects return.
Say, for instance, we are testing a web crawler and have a method that processes the results
of a crawl. We could set the result of our future object to an expected value, and then build
our test around this specific value.

We can call like this:

The set_exception() method
Similar to the previous method, the method sets the
exception that a Future object should return.

Executors and Pools

[169]

Cancelling callable
Sometimes, within your systems, you may wish to cancel jobs before they are processed by
your executor objects. This would be analogous to cancelling, say, a print job in real life--
we’ve somehow decided that we no longer need to print out a document within our print
queue, and we cancel it.

However, on a typical printer, we can’t cancel the task when it’s midway through
execution. This also applies to tasks that we submit to either our or

.

Cancelling tasks submitted to an executor can be done by calling the function on
that specific task as follows:

The cancel function returns a boolean value which is either true if we successfully managed
to cancel the future object, or false if unsuccessful. In the preceding example, you would see
that it returns false unless you submit jobs prior to that keeps the executor object
occupied.

Example
Let’s take a look at this in more detail in a full-fledged example. Here, we define some
arbitrary task to keep our occupied--this is called , and
prints out that it’s executing something before sleeping for n seconds.

In our main function, we again use the command to instantiate our
 as a context manager, and within the boundaries of this context

manager, we then submit four distinct tasks. Immediately after submitting all four tasks, we
then attempt to print the outcome of .

Note that we have defined for our , and as such, by
the time we call , the executor should be preoccupied running tasks 1 and
2, and shouldn’t yet have started task 3:

Executors and Pools

[170]

Output
If we were to run the preceding program, then all four tasks would be submitted to

. Tasks 1 and 2 would then be picked up by the two available
workers within the pool. While the pool is occupied with these two tasks, we then attempt
to cancel task 3. Due to the fact it hasn’t yet started, you should then see that it outputs true
on the console. Tasks 1, 2, and 4 are then the only tasks to be executed and completed by
our program:

$ python3.6 10_cancellingCallable.py
Executing Task 1
Executing Task 2
True
Task 1 Finished Executing
Executing Task 4
Task 2 Finished Executing
Task 4 Finished Executing

Getting the result
Typically, in some scenarios, we fire and forget tasks to our executor objects, and we aren’t
too worried about any return values. However, there are times when we need to retrieve
and store these results for further processing.

Executors and Pools

[171]

When we utilize the function, retrieving the results is pretty simple, below
our call to we can utilize the following code in order to retrieve the results
when they are returned:

Example
The following code demonstrates a working example of how we can retrieve the results
using the preceding method. We start with an array of values, and then call
to map every value in this array to a task that our executor can pick up and process:

Executors and Pools

[172]

Output
If we were to run the preceding program, we would see that this method preserves the
order in which the tasks were submitted to the array:

$ python3.6 13_results.py
Done: 4
Done: 6
Done: 8
Done: 10
Done: 12
Done: 14
Done: 16

Using as_completed
There are cases where we decide that the map function isn’t fit for our needs, and as such,
we would need to store all of the future objects that we submit to our

 in an array of future objects.

By doing it this way, we can still take advantage of the method from the
 module, and process the results of all the tasks we submit to our

executor as and when they are returned.

Example
In this example, we’ll take in a small array of links that we wish to validate are working on
our site. We’ll utilize the module in order to request these URLs, and
then see what status code they return:

Executors and Pools

[173]

Output
If we were to run the last crawler, then we'll see that it prints out the URLs that it is
attempting to crawl. As and when each request completes, the program then outputs the
future object and its status.

You should note that the preservation of order is not guaranteed here. You cannot rely on
the order of the tasks that you submit to the executor to return in the same order. Some
tasks might take longer to complete. If you wish to maintain the ordering, then you will
have to rely on a sorting algorithm, and return the index alongside the results returned:

$ python3.6 14_asCompleted.py
Attempting to crawl URL: http://localhost:1313
Attempting to crawl URL: http://localhost:1313/about
Attempting to crawl URL: http://localhost:1313/get-involved/
Attempting to crawl URL: http://localhost:1313/series/blog/
URL Crawled with status code: (200, 'http://localhost:1313')
URL Crawled with status code: (200, 'http://localhost:1313/get-involved/')
URL Crawled with status code: (200, 'http://localhost:1313/series/blog/')
URL Crawled with status code: (200, 'http://localhost:1313/about')

Executors and Pools

[174]

Setting callbacks
Callbacks are something we’ll be covering in a hell of a lot more detail in , Event-
Driven Programming, and , Reactive Programming, when we look at both event-
driven programming and reactive programming. The best way to visualize callbacks is to
imagine you ask someone to do something that takes quite a bit of time. You, typically,
wouldn’t sit idle while that person completed the task; you would go off and do other
things with your time.

Instead, you would ask them to call you back when they had completed their task. In
programming, we’d appropriately call this a callback, and they are an incredibly powerful
concept that we can use in conjunction with our .

Upon the submission of a task to our , we can specify a callback for
the said function using the function like this:

This would then ensure that the function is called when our task is complete.
With this simple function call, we saved ourselves the hassle of watching each and every
task that we submit ourselves, and then, subsequently, kicking off some other function once
it’s done. These callbacks are incredibly powerful in the way that they handle everything
for us with very little work on our end.

Example
Let’s have a look at a full-fledged sample piece of code that utilizes this callback
functionality. We’ll begin by by defining two functions: the function, which will just
print out that it’s processing whatever we pass into it, and the function, which
will be our function.

Within this function, we first check to see if our future object has been cancelled
or whether it has been completed. We then print out the appropriate output to the console.

Executors and Pools

[175]

Below this, we define our main function, which simply creates and
submits a single task to it while also setting its callback:

Output
When we execute the preceding Python program, we should see that our

 starts, our task is then submitted, and picked up by said executor,
and the callback function executes as expected:

$ python3.6 04_settingCallbacks.py
Starting ThreadPoolExecutor
Processing 2
Our Task has completed
All tasks complete

Executors and Pools

[176]

Chaining callbacks
In certain scenarios, you may find your callback functions growing with complexity, and it
might make sense to split large callback functions into multiple functions. Thankfully, we
can add multiple callbacks to a single future object, and chain them together to produce the
desired results:

It’s important to note that each of these callbacks will be executed in the order in which they
were added.

Exception classes
In the previous chapter, we looked at how you could handle exceptions within normal child
threads in Python by utilizing a queue primitive in order to pass the exception from the
child thread to another thread. This was, however, somewhat hacky in the way that things
were done, and, thankfully, with , we no longer have to worry
about this, as it’s all handled for us.

In the same way that we retrieve the results from our future objects, so too can we return
the exceptions.

Example
In this example, we’ll define an function, which takes in a value. Within this
function, it first does a check to see if the type of the object passed into it is an integer. If it
isn’t, then it raises a new exception.

After this type check, it then checks to see if the number is even or not. If it is even, then it
returns true, and if not, it returns false:

Executors and Pools

[177]

Output
When we run the preceding program, you'll see that the program attempts to check if 2, 3,
and t are even. 2 and 3 are successfully processed, and the executor with t ends up throwing
an exception.

You should also see the results of the tasks printing out followed by the exception thrown
by the third task’s invalid input:

$ python3.6 12_exceptionThread.py
Checking if 2 is even
2 is even
Checking if 3 is even
3 is odd
Checking if t is even
Result of Task: True
Result of Task: False
Traceback (most recent call last):
 File "12_exceptionThread.py", line 28, in <module>
 # ...
 raise Exception("Value entered is not an integer")
Exception: Value entered is not an integer

Executors and Pools

[178]

ProcessPoolExecutor
 can be used and created in much the same way as your standard

. It subclasses the Executor class the same way the
 class does, and thus, features many of the same methods within it.

Creating a ProcessPoolExecutor
The process for creating a is almost identical to that of the

 except for the fact that we have to specify that we’ve imported that
class from the module, and that we also instantiate our executor
object like this:

Example
The following example features a very simple full example of how you can instantiate your
own and submit a couple of tasks into this pool. It should be noted
that our task function here isn’t that computationally expensive, so we may not see the full
benefit of using multiple processes, and it could, in fact, be significantly slower than your
typical single-threaded process.

We’ll use the module to find the current PID of each of the tasks that we execute within
our pool:

Executors and Pools

[179]

Output
When we run this, we'll see that both our submitted tasks are executed as well as the
Process IDs in which they were executed. This is a very simple example, but it’s good at
verifying that we are indeed running our tasks across multiple processes:

$ python3.6 06_processPool.py
Executing our Task on Process 40365
Executing our Task on Process 40366

Context Manager
The next method we’ll look at when working with is to use them
as a context manager like we’ve previously done with . We can do
this by using the command as follows:

with ProcessPoolExecutor(max_workers=3) as executor:
… submit tasks etc…

Context managers handle the allocation and release of certain resources for you, and as
such, this is the preferable way of handling your process pools. I also find that the syntax
for doing it this way trumps other methods, and it can help you write cleaner and more
succinct code.

Example
In this example, we’ll look at how we can employ a context manager to make our code nicer
and more readable. We’ll make it slightly more interesting in the sense that we’ll pass
arguments to our task function within our submit function call:

Executors and Pools

[180]

Output
When you run the preceding program, you'll see that each of the tasks executes, and prints
the value that we’ve passed into each task:

$ python3.6 02_processPoolExe.py
Starting ThreadPoolExecutor
Processing 2
Processing 3
Processing 4
All tasks complete

Exercise
In order to get comfortable with , I suggest you try to write a
program that creates black and white versions of a large number of different photos. For
this task, I recommend you download Pillow, which is a fork of the Python Imaging
Library.

Image processing is computationally expensive, as each pixel within the image has to be
processed and recalculated when converting to black and white.

The main requirements are as follows:

The process must utilize the class
The project should be able to process multiple images in parallel, but ensure it
does not process the same image on two different processes

Getting started
Just to get you started, you can refer to the following sample code for how you can convert
an image from a normal RGB image to a black and white version of itself:

Executors and Pools

[181]

Improving the speed of computationally bound
problems
So we’ve seen how we can use both and the

 within our Python applications, but knowing when to use them is
also important. The difference between both comes down to their underlying mechanisms.

 is named as such because it utilizes threads in order to achieve
concurrent execution. utilizes processes.

We’ve covered the differences between processes and threads and when to use them in a
number of previous chapters, but I feel it’s good to reinforce this point with a code example.
In this example, we’ll check to see if any of the values within an array of large values is
prime or not. In order to determine if it’s prime or not, we’ll utilize the sieve of
Eratosthenes, which, in Python, looks something like this:

Full code sample
The following is the entire code sample which runs through our array of primes using both

 and . In this particular sample, we’ll also
utilize the module that we explored in detail in the previous chapter:

Executors and Pools

[182]

Output
If we were to run the last program, we'll see that both the process pools iterate through
every element in the array, printing out whether or not each value is prime or not before
printing out the total time for execution.

This is followed, immediately, by the thread pool executor, which follows exactly the same
process of calculating the prime before printing out the total execution time. You should see
an output that is similar to this on your terminal:

$ python3.6 08_poolImprovement.py
112272535095293 is prime: True
...
1099726899285419 is prime: False
2.8411907070549205 Seconds Needed for ProcessPoolExecutor

Executors and Pools

[183]

112272535095293 is prime: True
...
1099726899285419 is prime: False
4.426182378898375 Seconds Needed for ThreadPoolExecutor

 in this case, managed to work through the list in approximately 2.8
seconds, while the total time needed for was 4.4 seconds. This
represents an almost 60% increase in the total processing time for utilizing threads.

If we tried to do this in a single-threaded manner, we would see that the time taken for the
program to run through our array of values would be slightly faster than the execution time
for our . If you wish to test this yourself, then you can add the
following code to the bottom of the function in the previous example:

Improving our crawler
Now that we’ve had an in-depth look at both and

, it’s time to actually put these newly learned concepts into
practice. In , Communication between Threads, we started developing a
multithreaded web crawler that was able to crawl every available link on a given website.

The full source code for this Python web crawler can be found at this link:
.

It didn’t, however, output the results in the most readable format, and the code could be
improved using . So, let’s have a look at implementing both more
readable code and more readable results.

The plan
Before we get started, we need to define a general plan as to how we are going to improve
our crawler.

Executors and Pools

[184]

New improvements
A few examples of the improvements we might wish to make are as follows:

We want to refactor our code to use
We want to output the results of a crawl in a more readable format such as a CSV
file or JSON files
We want to capture more information on each and every page that we crawl so
that we can try to improve our sites using this data

These three things will pose a good starting point as to what we can improve. There are a
couple of more things we’ll be looking to improve upon, such as exposing this web crawler
service as a RESTful API, in , Event-Driven Programming.

Refactoring our code
Okay, so the first thing we are going to do is refactor the way we implement multithreading
in our application. We want to move away from us having to manage the startup and
shutdown of all our threads, and, instead, leave that in the capable hands of

.

So, if we look back at our crawler code, in order to start up numerous threads, we would
have to do something like this:

Executors and Pools

[185]

However, using , we can condense this down to just a couple of lines
now using our command. Our code has become more succinct and easier to follow as
a result:

Executors and Pools

[186]

Storing the results in a CSV file
Like them or loathe them, CSV files represent a quick and simple way of storing the results
of all our scrapping, and allow us to perform analyses on these results quickly and easily
using existing software such as Microsoft Excel.

In order to append our results to a CSV file, we can use the already available module
that comes with Python.

We’ll define an function, which will take an input and append this input as a
line to our file, as follows:

This function will live within our main thread, and will be called as and
when a result is returned from our executor object. Having this live solely within our main
thread means that we don’t have to worry about race conditions and place locks to guard
this resource.

Now that we’ve defined our file, we need to actually call this method
whenever we get a result. In order to do this, we’ll have to update our function, and
add the following code to it, where we submit the URLs in our queue to the executor:

Executors and Pools

[187]

This will leave our final method looking something like this:

Exercise - capture more info from each page
crawl
So, we’ve successfully managed to add a method for capturing the results of our site
crawling to a CSV file, but right now, what we are capturing is pretty minimal. As an
exercise, you should try to improve the amount of data we capture on every page crawl.

You could add things like the following:

Total time to download
Page size in KB
Text to HTML ratio

These represent just a few prime characteristics that you could try to capture, but it’s
important to note that there are potentially hundreds of others.

Note that the code for this crawler was used to create the following
website analyzer: .

Executors and Pools

[188]

concurrent.futures in Python 2.7
For those of you stuck in the land of Python 2.7 due to bureaucracy, having to support
legacy codebase, lack of appropriate packages in Python 3.* for the tasks at hand, or
whatever other reason, fear not! The module is still accessible through the use of
pip.

pip install futures

The preceding command will give you, essentially, everything that the Python 3.2+ version
of the module has to offer without having to migrate your codebase.

Summary
In this chapter, we successfully covered everything you need to get started with thread
pools, process pools, and future objects. We looked at the various ways you could
instantiate your own thread pools and process pools as well the advantages of using thread
and process pool executors over the traditional methods.

You should now have a good appreciation of how we can improve the performance of our
multi-threaded, multi-processed applications by utilizing this pooled-resource concept.

We also looked at how we could improve the existing implementation of our web crawler
and refactor it so that it was easier to follow, and utilized some of the key concepts featured
in this chapter. In the next chapter, we’ll be looking at how we can utilize multiple
processes within our applications, in depth.

88
Multiprocessing

In this chapter, we will look at the wonders of multiprocessing in Python, and how it can
answer the question of how to achieve truly parallel execution in Python.

We’ll take a look at a number of topics such as the following:

How multiprocessing allows us to eliminate the impact of the GIL
The life of the processes in Python--how to spin up child processes, identify these
processes, and ultimately kill them when we no longer need them
How to utilize the multiprocessing pool API
Communication and Synchronization between our multiple processes

By the end of this chapter, you will be quite comfortable writing your own programs that
leverage the true parallel power of multiple processes.

Thankfully, for those of you still stuck in the past, most of the concepts we
are going to cover in this chapter are indeed available in Python 2.7. The
multiprocessing module was introduced in version 2.6.

Working around the GIL
The global interpreter lock (GIL) can be a truly performance-hindering mechanism at times
for our CPU-bound tasks. Throughout this book, we’ve been looking at techniques, such as
asynchronous programming, which could minimize the impact that this global interpreter
lock has on our Python system’s performance.

Multiprocessing

[190]

However, with the use of multiprocessing, we can effectively bypass this limitation
altogether, through the utilization of multiple processes. By utilizing multiple processes, we
utilize multiple instances of the GIL, and, as such, we aren’t confined to only executing the
bytecode of one thread within our programs at any one time.

Multiprocessing in Python allows us to express our programs in such a manner that we can
fully utilize the processing power of our CPUs.

Utilizing sub-processes
Within Python, we have the ability to spin up multiple processes that can be executed on
separate cores within our CPU.

Example
In this example, we’ll create a child process which will simply execute some print
statements. This represents the simplest way you can spin up child processes using the
multiprocessing module, and it’s probably the clunky way you could go about
implementing multiprocessing in your Python applications:

Multiprocessing

[191]

Output
Upon running this rather simple Python program, you should see that first the main
process executes its print statement before going on to spin up and execute a child process:

$ python3.6 08_subprocess.py
Executing Main Process
Creating Child Process
Currently Executing Child Process
This process has it's own instance of the GIL
Child Process has terminated, terminating main process

The life of a process
Within the multiprocessing module, we have three distinct methods of starting processes
within our Python programs:

Spawn
Fork
Forkserver

While you may never call upon this knowledge while you are crafting your multiprocess
programs in Python, it’s worthwhile to know how the underlying mechanisms work, and
how they differ from one operating system to another.

I’d recommend that you check out the official Python documentation
which can be found here:

.

Starting a process using fork
Forking is the mechanism used on Unix systems in order to create child processes from the
parent process. These child processes are almost identical to their parent process and
similar to the real world: children inherit all of the resources available to the parent.

The fork command is a standard system command found in the Unix ecosystem.

Multiprocessing

[192]

Spawning a process
By spawning a separate process, we spin up a second distinct Python interpreter process.
This includes its own distinct global interpreter lock, and, as such, each process is able to
execute things in parallel, as we are no longer constrained by the limitations of a simple
global interpreter lock.

Each freshly spawned process inherits only the resources it requires in order to execute
whatever is passed into its run method. This is the standard mechanism that Windows
machines use when spinning up new processes, but it can also be used on Unix systems.

Forkserver
Forkservers are a somewhat strange mechanism for creating distinct processes, and it’s a
mechanism that’s only available on select Unix platforms that support passing file
descriptors over Unix Pipes.

If a program selects this mechanism for starting processes, then what typically happens is
that a server is instantiated. This server then handles all the requests for creating any
processes, so when our Python program attempts to create a new process, it first sends a
request to this newly instantiated server. This server then creates the process for us, and we
are free to use it within our programs.

Daemon processes
Daemon processes follow much the same pattern as the daemon threads that we
encountered earlier on in this book. We are able to daemonize the running processes by
setting their daemon flag to True.

These daemon processes will then continue to run as long as our main thread is executing,
and will only terminate either when they have finished their execution, or when we kill our
main program.

Multiprocessing

[193]

Example
In the following example, we’ll look at just how simple it is to define and start your own
daemon processes in Python:

Breaking it down
In the preceding program, we first import the necessary multiprocessing and time modules.
We then go on to define a function, which we’ll set as the target of the daemon process that
we are about to create.

Within this function, we first print out that we are starting our process,
and then we go on to print out the current process. After this is done, we simply sleep for 3
seconds, and then print out that our daemon thread is terminating.

Below our function definition, we first print out the current process, and
then instantiate our process and set the daemon flag of this process to true. Finally, we carry
on with the work our main process has to do, and then our program terminates shortly
after.

Output
If we were to run this program, then you should see that it first outputs the main process
from our call. We start our daemon process, and then call the same

 function from within that process.

Multiprocessing

[194]

Note the differences between our main process and our daemon process. You should notice
that Process-1 states that it is started and displays that it is indeed a daemon process.

$ python3.6 00_daemonProcess.py
Main process: <_MainProcess(MainProcess, started)>
We can carry on as per usual and our daemon will continue to execute
starting my Daemon Process
Daemon process started: <Process(Process-1, started daemon)>
Daemon process terminating

It should be noted that you cannot create child processes from daemon
processes; if you try this, it will fail on calling .

Identifying processes using PIDs
All processes living within an operating system feature a process identifier, typically known
as the PID. When working with multiple processes within our Python programs, you may
expect our program to only have one process identifier, but this isn’t the case.

Instead, each and every sub process that we spawn within the confines of our Python
programs receive their own PID numbers to separately identify them within the operating
system. Separate processes having their own assigned PIDs can be useful when it comes to
performing tasks such as logging and debugging.

We can capture the process identifiers of any of our Python sub processes such as this:

The last code snippet will print out the current process identifier for that particular Python
program when executed.

Example
In this full-fledged example, we’ll spin up a single child process, and pass in our

 function as it’s target for execution:

Multiprocessing

[195]

Output
This preceding program should output the PIDs of both the main process and the created
child process, as follows:

$ python3.6 01_identifyProcess.py
Main process PID: 85365
Child Process With PID: 85367
Child process terminating

This is just to quickly bring you up to speed with getting the process identifier for the
current process. However, it’s important to note that you can attain things other than the
PID from your current process.

Much like your class, you can do things such as name your individual
processes. Say you have two processes working on a certain type of tasks, and two other
working on another distinct type of task. When logging the output of these tasks, you don’t
want to see a string of "process-1 did x", "process-2 did y".

Instead, you can name your child processes to be more meaningful--this only helps you
further down the line when it comes to the fateful day that you have to debug a production
issue, and find out exactly what went wrong.

To name a process after it has been created you can do something like this:

Multiprocessing

[196]

This last code will output something like this:

$ python3.6 12_nameProcess.py
My-Awesome-Process Just performed X

Whenever it comes to writing production applications, do all you can to ensure traceability
within your application. You will, more often than not, have to support the applications
that you develop, so, ensure that you help your future self out by making logging as
verbose as possible.

Terminating a process
Being able to terminate child processes that we have spun up is important. Within smaller
Python scripts that you run ad hoc on your local machine, the importance of cleaning up
after yourself might not be that apparent. However, when it comes to larger enterprise
Python programs that run on expensive servers indefinitely, this becomes very important.

With long running systems, we need to ensure that we aren’t spinning up thousands upon
thousands of idle processes, and leaving them to, essentially, hog the system resources.
Therefore, being able to terminate these processes is considered quite important.

In order to terminate processes in Python, we can utilize the function on our
Process objects like this:

Example
In this example, we are going to spin up a single child process, which will simulate
executing something for 20 seconds. Upon startup of this process within our main function,
we will immediately call the aforementioned function in order to terminate this
newly created process:

Multiprocessing

[197]

Upon execution of this program, you should notice that it terminates before the child
process is able to complete its full 20 seconds of blocking. This shows that we’ve been
successful in the termination of our child thread.

Getting the current process
Being able to identify individual processes can be important from a logging and debugging
point of view, so, it’s useful to know how you can retrieve the PID for all of the processes
within your Python applications. We can retrieve this in much the same way we used to
retrieve the current thread when we looked at multithreading.

We can use the following code in order to retrieve the current process ID (PID):

This preceding code snippet will retrieve the current process identifier for the process that
is currently executing.

Subclassing processes
In , Life of a Thread, we looked at how we could create threads by subclassing the

 class. We can apply this same style to create processes.

Multiprocessing

[198]

Example
In this example, we'll look at how we can implement our own classes that subclasses the

 class. We’ll define a class aptly called , which will
include two functions: constructor and "run".

Within the constructor, you’ll notice that we make a call to super(,
). . This call initializes our process for us, and turns our class from an

ordinary Python object into a process.

In the run method, we’ll simply print out the current process ID to show that we’ve
successfully subclassed the class.

Output
When we run the preceding program, we'll see that the main process first prints out its PID
before it goes on to create and start a second child process. This child process should then
print out its different PID.

$ python3.6 10_subclass.py
Main Process PID: 24484
Child Process PID: 24485

Multiprocessing

[199]

Once we’ve successfully subclassed our class, we can start to
do more interesting things such as spinning up multiple processes in quick succession, as
follows:

This would spin up x distinct child processes, where x is the number of CPU cores currently
available on your machine.

Multiprocessing pools
When working with multiple processes within our Python applications, we have the option
to leverage the very versatile class that lives within the multiprocessing module.

The Pool implementation allows us to succinctly spin up a number of child processes within
our programs, and then delegate tasks for the workers in these pools to pick up.

The difference between
concurrent.futures.ProcessPoolExecutor and
Pool
We covered in , Executors and
Pools, so, what is the need for another implementation of a process pool?

The implementation of process pools utilizes an almost identical
implementation in order to provide parallel processing capabilities. However, the aim of the

 module was to provide a simpler interface to work with when
creating process pools. This simpler interface is easy for programmers to immediately start
working with both Thread and process pools. However, with this abstraction from
complexity, we lose out on some of the more fine-grained controls that we may need in
specific scenarios.

Multiprocessing

[200]

Due to the fact that and are subclasses of
the same abstract class, it’s also far easier to work with them and memorize their inherited
methods.

When it comes to availability in terms of both Python 2 and Python 3, the multiprocessing
module trumps , as it was introduced in version 2.6 of the language,
and you aren’t required to work with a backported version.

In general, I’d recommend the module over the
 module, as it will meet your requirements most, if not all, of the time.

However, you do need to know the alternatives should that fateful day come around where
you meet the limitations of and require more control.

Context manager
We can utilize multiprocessing pools using context managers in much the same way that
we utilized . We can again leverage the keyword in this
fashion:

By doing it in this preceding fashion, we are able to simplify our codebase, as we no longer
have to deal with actions such as releasing the resources acquired by our pool. We can then
choose to do things such as map iterables to the child processes executing within this pool
with relative ease.

Example
This next example showcases a full-fledged example of us using the Pool in the context
manager fashion. We define a simple task function, and within our main function, open up
our context manager. Within this, we then map all the values in our array to the
task function, and print the results:

Multiprocessing

[201]

Output
The previous Python program simply prints out the three values that we mapped to our
process pool.

Submitting tasks to a process pool
More often than not, what we do with Pools will be more complex than the example given
in the last subsection, and we’ll have to, somehow, interact with these pools in a number of
distinct ways.

This is where the power of the class comes to light. It features a far
more fleshed-out API that we can play with.

In order to realize the full potential of your multiprocessed Python programs, you should
learn these, and become as familiar as possible with the different methods for submitting
tasks to your pool objects.

Apply
Apply is to Pools as is to . This is to say, they are just
about the same in the sense that you use them to submit to individual tasks to our pools
objects.

In this example, we are going to define a simple function which will take in one
parameter. This is the same function that we’ll use in all the subsequent examples
for this section of the book.

We then go into our function, which starts our as a context manager, and simply
prints out the result of each of these tasks:

Multiprocessing

[202]

It should be each noted that the function blocks until the result is ready, so, it’s
not exactly ideal for doing work in parallel. If you wanted to perform work in parallel, then
you should really be using the sister function, .

Apply_async
In situations where we need parallel execution of our tasks, this is the function we’ll need to
use in order to submit tasks to our pool.

In this example, we are going to use a for loop to submit four tasks to our processing pool
as with our newly discovered . We keep track of these tasks by appending
them to a tasks array, and then iterate over this task array to wait for the results:

Multiprocessing

[203]

Upon execution of this, you should see that our four tasks are picked up by our process
pool, and executed by four distinct processes. Because we call in the same
order that they are submitted to the tasks array, we then get an ordered output of the results
printing out to our console:

$ python3.6 21_applyAsync.py
apply_async
Task processed by Process 99323
Task processed by Process 99324
Task processed by Process 99322
Task processed by Process 99325
Result: 0
Result: 2
Result: 4
Result: 6

Map
Much like its equivalent, the map
function allows us to map every element in an iterable to a task that can be picked up by a
worker in our process pool.

In this small example, we look at mapping to our process pool using
the map function:

This function should then go on to print out the following on the console upon
execution:

$ python3.6 17_mapPool.py
mapping array to pool
[8, 6, 4, 2]

Multiprocessing

[204]

However, like our function, each of these tasks blocks till the result is ready, so, in
some cases, you may need to resort to in order to achieve fully parallel
asynchronous performance.

Map_async
The is the asynchronous offering for all your mapping needs. It works almost
exactly like your standard map function with the exception that the jobs submitted through

 function execute asynchronously:

Imap
The function works in a somewhat similar fashion to your standard map function
except for the fact that it returns an iterable. This can be very advantageous in certain
situations, and I’m a big fan of using iterables, mainly, because Python features some very
elegant ways to handle iterables.

In this example, we will call , passing it in both and
that we wish to map to our pool. Once this has finished, we then iterate over all of the
results within this iterable using the method, and print this out to the console:

Multiprocessing

[205]

Upon execution of this program, you should see every element of the array we’ve passed in
being doubled and printed out on our console in the order that it was submitted to our pool
in.

$ python3.6 17_mapPool.py
3
5
4
3

Imap_unordered
The is aptly named as such, because when used, it returns an iterable
map, and it executes the tasks submitted to it in an unordered fashion:

Upon execution of this preceding program, you should see something like this:

$ python3.6 17_mapPool.py
3
3
4
5

Multiprocessing

[206]

We've been returned an iterable that contains transformed elements, which are not in the
same order as they were inputted. has returned the elements in the order
in which they completed.

Starmap
The starmaps are awesome in the sense that they allow us to submit a list of tuples to a pool
instead of your standard single variables. This, essentially, provides us slightly more
flexibility, and can be very handy in certain situations.

In this example, we’ll submit the list of tuples that each contain two distinct values--
-- to our pool, and print the returned results:

Notice that we’ve updated the function in order to take in the same number of
arguments as we have values in each of our tuples. We then sleep for x/2 seconds, and then
return squared.

This produces the following output:

$ python3.6 18_starmap.py
[6, 2]

Multiprocessing

[207]

Starmap_async
This is another asynchronous implementation which we can play with. It offers all of the
same functionality as except for the fact that it executes the given tasks
asynchronously:

Maxtasksperchild
Certain applications such as Apache and , typically, have stopgaps in their code,
which allow resources to be freed up for other things from time to time. This entails
processes stopping after an x amount of work is done, and, effectively, being recycled.

For us to achieve this within our own pools, we can pass in the
parameter, and set this to however many tasks we want our worker processes to execute
before being recycled.

In the following example, we see exactly how this would work in real terms. We’ve taken
the previous example code, modified it slightly by adding the

 parameter to our pool, and submitted another task to this pool:

Multiprocessing

[208]

Upon execution of the preceding program, you should see the following output:

$ python3.6 20_maxTasks.py
92099 Executed my task
92099 Executed my task
92100 Executed my task
92100 Executed my task
[6, 2, 4, 2]
92101 Executed my task
92101 Executed my task
92102 Executed my task
92102 Executed my task
[6, 2, 4, 6]

In the preceding output, you saw two things happen. The first that we
submitted to our Pool gets split up into four distinct tasks; these four tasks are then picked
up by the one process that we currently have running in the pool.

The process then executes two of these tasks, and is then recycled. We can see this clearly as
the PID of the process increments to the next available PID on the OS after the execution of
every two tasks.

Communication between processes
When it comes to synchronization between multiple sub processes, we have a number of
different options that we can leverage:

Queues: This is your standard FIFO queue, which was covered in ,
Communication between Threads.
Pipes: These are a new concept, which we’ll cover in more detail very shortly.
Manager: These provide a way for us to create data, and subsequently, share this
data between different processes within our Python applications.
Ctypes: These are objects that utilize a shared memory which can subsequently
be accessed by child processes.

Multiprocessing

[209]

The aforementioned four options represent quite a formidable number of different
communication mechanisms that you can utilize within your multiprocess applications. It’s
definitely worth spending quite a bit of time engrossed within this topic in order to ensure
you are making the correct choices when it comes to communication.

This book, unfortunately, does not have enough space to cover the near-infinite number of
possible solutions that could be implemented using any of these options. I would suggest
that if you are curious about venturing deeper into this topic, then you should pick up High
Performance Python, by Ian Ozsvald; Micha Gorelick, as it has an excellent chapter that
covers these concepts in greater detail.

Pipes
Pipes represent a way we can pass information from one process to another. We have two
distinct types of pipes: anonymous pipes and named pipes. Pipes are a very typical
mechanism employed within operating systems in order to pass information between their
own separate processes, so, it makes sense that we employ them to do the same tasks for us
in our own multiprocess programs.

Anonymous pipes
Anonymous pipes are a simplex FIFO communication method used within operating
systems for inter-process communication. Simplex, if you’ve never heard of the term before,
means that only one direction transmits at one time. The best way to imagine this is if you
had two radios; in order for these radios to work, only one person can be holding down the
button and talking at one time. The other person has to listen and wait for the “Over” signal
before they can start sending their own messages.

In order to achieve duplex communication, in other words, two-way communication, we
have to use two anonymous pipes through which our processes communicate. These
anonymous pipes are supported by most major operating system implementations, and are
a great way for processes to communicate while maintaining high performance.

Named pipes
Named pipes are almost identical to anonymous pipes except that named pipes, typically,
last as long as the underlying operating system is up. Anonymous pipes only last as long as
the process lasts.

Multiprocessing

[210]

Working with pipes
Now that we have some idea of what pipes are and how they operate within our operating
system, it’s time to look at how we can utilize them within our Python programs.

To create a pipe in our Python programs, we need to import the module, and then call
. This method creates a pipe within our operating system, and

returns a tuple which is used for reading and writing respectively. In the following
example, we’ll use for reading and for writing:

Example
In this example, we’ll create a child process, which, again, subclasses the

 class:

Multiprocessing

[211]

Upon execution of the preceding program, we get the following output:

$ python3.6 11_pipes.py
Attempting to pipein to pipe
Pipe: My Name is Elliot

Handling Exceptions
Being able to handle exceptions thrown in your child processes is incredibly important if
you want your application to succeed. Allowing exceptions to fizzle out into the ether, and
bring down child processes with no means of recovery is the worst thing you application
can do.

Silently handling exceptions is one of the biggest sins of developers, and while it might be
tempting to quickly silence a thrown exception, it will infuriate other developers
troubleshooting issues further down the line.

When it comes to handling these exceptions, we have a number of distinct options. We can
use the already covered method of communicating between child processes and parent
processes in order to pass raised exceptions back to our parent process to be handled in
whichever way it chooses. However, there is an alternative option to this, and that is to
utilize pipes to transport these exceptions between processes.

Using pipes
When it comes to using pipes within your Python code, we have two options, the first of
which is to use the module in order to create your pipes, and the second is to leverage

.

The difference between the two is that the implementation is,
typically, far more high level than the implementation. A key thing to note is that
you can only perform bidirectional communication using the
implementation, as is unidirectional.

Multiprocessing

[212]

In this example, we look at how we can pass information from thrown exceptions from
child processes back up to parent processes:

Multiprocessing managers
Within the module, we have the class; this class can be utilized
as a means of controlling Python objects, and providing thread and process safety within
your Python applications.

Multiprocessing

[213]

We can initialize a new Manager like this:

With this object, we can then start to share things such as lists and dicts across
multiple processes, and typically, it’s the first port of call you’d go to if you needed to
implement your own form of communication.

Namespaces
Managers come with this concept of namespaces; these namespaces feature no public
methods that we can call, but they are useful in the sense that they have writable attributes.

In situations where you need a quick and dirty method for sharing several attributes across
multiple processes, this is the prime candidate for doing so.

Example
In this example, we look at how to utilize namespaces in order to share some data across
both a main process and a child process:

Multiprocessing

[214]

If we then go ahead, and execute the preceding program, we should see three things
happen. First, we print out the object as it stands at the start of our program's
execution. This should state that . We then print this out from our sub process before
modifying it to a new value of .

We then proceed to print out the namespace again from our parent process, and this time,
you should see that the value within it has been incremented to :

$ python3.6 07_manager.py
Namespace(x=1)
1
Namespace(x=2)

Queues
We’ve explored the queue synchronization primitive in , Communication between
Threads, and while we focused primarily on how they can be used in multithreaded
scenarios, it’s important to note that they can also be used in conjunction with multiprocess
programs.

Example
In this verbose example, we’ll explore exactly how we can implement a communication
mechanism between distinct child processes using the queue synchronization primitive.

We define the function, which takes in our shared queue as a parameter, and
simply pops a value from the queue. Within our function, we then define both our

 object and our shared queue using this:

We then define three separate processes that take in the function as their target for
execution, and the as their one and only argument. We then start and join
each of these processes in turn:

Multiprocessing

[215]

Output
Upon execution of this program, you should see that our three distinct processes with their
three distinct PIDs pop 2, 3, and 4 respectively from this shared queue object.

$ python3.6 06_mpQueue.py
Process 89152 Popped 2 from the shared Queue
Process 89153 Popped 3 from the shared Queue
Process 89154 Popped 4 from the shared Queue

Listeners and clients
While the majority of communication between distinct processes and sub processes might
be done using your standard queue primitive or using a pipe, there does, however, lie
another mechanism which we can employ. The alternative is to leverage the

 module.

Multiprocessing

[216]

The module is, essentially, a high-level message-oriented API
for dealing with sockets or Windows named pipes.

Example
The official documentation for the module has some
exemplary examples of showcasing the way that both a client and listener can interact with
one another, and send messages.

In this example, we’ll explore this example code in greater detail to gain a basic
understanding of communication using both a listener and a client.

The Listener class
First and foremost, we’ll need to define a listener, as this will need to be started first on our
system. We import the class from the module,
and then define an address tuple which takes in and , which will be our
port.

We then use as a context manager, and wait to accept a connection on this port.
Note that we set --this is to ensure that we don’t receive
information from rogue processes, but only from separate processes that connect to this
address and port with the correct :

Multiprocessing

[217]

The Client class
The next thing we need to define is , which will do the job of first connecting to our
listener, and then print whatever we send from our process.

We first have to import the class from our module.
We then again utilize the class as a context manager passing in the address we wish
to connect to as well as that we’ve already defined on our class.

Upon successful connection, we then print everything we receive from our class.
We do this in a variety of ways to showcase the flexibility of the module:

Output
Upon execution of our listener script, you will see that our listener waits indefinitely until
one connection has been made; at the point at which the connection has been made, it prints
that it has accepted the connection, and the IP and port from which it accepted this
connection:

$ python3.6 23_listener.py
connection accepted from ('127.0.0.1', 56197)

Multiprocessing

[218]

Once we’ve started our listener program, we can then kick off our client program. This
successfully connects to our running listener, and then prints out the array of different
messages that we send to it:

$ python3.6 22_client.py
[2.25, None, 'junk', <class 'float'>]
b'hello'
8
array('i', [42, 1729, 0, 0, 0])

This should, hopefully, give you some indication of the power of the
 module, and how you can use it to efficiently pass

information between multiple processes running on the same hardware.

Logging
I believe that as we venture deeper into the world of high performance computing with
Python, we need to take a step back and re-evaluate how we’ve implemented logging
within our multithreaded/multiprocess Python applications.

For the majority of the samples in this book, a simple print, typically, suffices when it comes
to logging exactly what is going on within our programs. However, as we start to face more
and more complex challenges, we need to be aware of the better solutions out there when it
comes to logging our applications' output.

Having a well-crafted logging system within your application can be an exceptionally good
way to understand the behavior of your application over longer periods of time.

An exceptional resource I would recommend you check out is the official
Python logging-cookbook which can be found at

.

Example
Thankfully, logging is a default module within Python, and we can easily import this into
our Python programs like this:

Import logging

Multiprocessing

[219]

Once we’ve done this, we configure our logging system to log more meaningful log
messages to a file within our programs directory, as follows:

In the preceding line, we specify the filename that we want to , and the logging level to
. We then specify the format that we want each and every logging message to follow

when it’s appended to our file.

Notice that the first thing we add to our format string is . This
ensures that we have traceability over each and every sub process within our application.

Upon execution of the preceding code, you should see the following being input into the
 file.

Every line features the name of the process that has taken on each task as well as the level
name and the log information being given as output:

ForkPoolWorker-1 %s:INFO:2 being processed
ForkPoolWorker-1 %s:INFO:Final Result: 4
ForkPoolWorker-2 %s:INFO:3 being processed
ForkPoolWorker-2 %s:INFO:Final Result: 6
ForkPoolWorker-3 %s:INFO:4 being processed
ForkPoolWorker-3 %s:INFO:Final Result: 8
ForkPoolWorker-4 %s:INFO:5 being processed
ForkPoolWorker-4 %s:INFO:Final Result: 10
ForkPoolWorker-1 %s:INFO:6 being processed
ForkPoolWorker-1 %s:INFO:Final Result: 12

Multiprocessing

[220]

Communicating sequential processes
Communicating Sequential Processes, or CSP for short, is used to describe how systems that
feature multiple concurrent models should interact with one another. It, typically, relies
heavily on using channels as a medium for passing messages between two or more
concurrent processes, and is the underlying mantra of languages like clojure and golang.

It’s a concept that is certainly growing in popularity, and there are a number of fantastic
talks and books on CSP that you should definitely check out.

I’d recommend checking out Communicating Sequential Processes by
C.A.R. Hoare, which was published in May of 2015, the link for which is
this: .

After some brief research on the topic, it’s fascinating to see how certain problem sets can be
abstracted out quite easily using this style of programming as opposed to your more
traditional object-oriented setups.

PyCSP
PyCSP is a Python library that implements the core primitives found in Communicating
Sequential Processes. It was originally started way back in 2006, and it’s stabilized to the
point where releases are becoming more infrequent. The library offers a transparent
distributed communication model while relying only on standard Python Modules.

Overall, it’s quite an interesting concept that sheds a new light on how you can implement
your own multiprocess-based Python applications using Python’s in-built decorators.

In order to install PyCSP, you'll have to use as follows:

python3.6 -m pip install pycsp

Multiprocessing

[221]

Processes in PyCSP
The following is a very simple example of just how we can construct concurrent Python
applications using the PyCSP module. As you can see, we define two distinct functions,

 and . We then decorate these functions with the annotation,
and this handles turning the entirety of this method into a process for us. We then tell our
PyCSP-based program to run both process 1 and process 2 in parallel to each other:

Output
Upon execution of this preceding program, you should see that both process 1 and process
2 successfully output their print statements before the program informs us that it's
terminating:

process1 exiting
 process2 exiting
 program exiting

Overall, the concept of CSP is an interesting one, and I thought it was a worthy addition to
the end of this chapter even if it was just food for thought.

Multiprocessing

[222]

Summary
In this chapter, we looked comprehensively at multiprocessing, and how it can be utilized
within our systems. We followed the life of a process from its creation all the way through
to its timely termination.

We looked at the various intricacies such as cross-process communication and
synchronization, and we also looked at how your standard multiprocessing pools differ
from the standard that we explored in , Executors and
Pools.

We then took a brief look at how we can implement things such as communication and
synchronization between our various processes without incurring major performance
penalties, or becoming the proud owners of systems plagued by race conditions.

In the next chapter, Event-driven programming, we'll be diving deep into the
module, and understand how we can leverage this module in order to develop our own
event-based Python programs.

99
Event-Driven Programming

In this chapter, I'm going to introduce you to the wonderful art of event-driven
programming. Event-driven programming is a paradigm that focuses on events. While this
may be somewhat obvious, what isn’t all that obvious is the definition of an "event" in the
programming sense and what entirely this encapsulates.

We’ll first look at what event-driven programming is in a general sense, and then, we’ll
introduce the module, which is predominately used for all types of event-driven
Python applications.

This chapter also looks to give you an introduction to the world of asyncio programming.
This could, in theory, have it's own book written about it. I'll attempt to demystify some of
the more critical sections and provide some small examples of how you can utilize them
within your own programs.

All in all, we'll be covering the following topics in this chapter:

Event-driven programming--what is it and how does it work?
The module in depth
Debugging asyncio-based programs
The Twisted event-driven networking engine
Gevent

This should be enough to get you up and running to create your own event-driven systems
in Python.

Event-Driven Programming

[224]

Event-driven programming
Event-driven programs are very different from the Python applications that we have got so
used to writing within the confines of the previous chapters of this book. Typically, each of
these prior programs follows a set flow, and while some sections of a program may be
nondeterministic in terms of execue main memory, and independentram very much follows
a deterministic approach:

With event-driven programs, we typically have an event loop that constantly listens for
incoming events. Once this event loop is started, it's entirely down to the events inputted
into the system that determine what is then executed and what order they have to be
executed in. An example of this would be an event-driven program that listens to keyboard
input: we have no way of determining what key will be pressed next, but we will have a
certain function mapped to the said key when our program receives this event.

In the following diagram, you'll see an example of the flow that an event-driven program
typically follows. We see it start up and then enter a Wait state. This wait state goes on
indefinitely until the program is shut down through either the triggering of a specific event
or a system crash.

During this Wait state, we are constantly listening for events and then passing them off to
event handlers. Now, while this diagram only shows one particular event mapped to one
handler, it should be noted that in some event-driven programs, the number of events and
handlers could be theoretically infinite:

Event-Driven Programming

[225]

This makes it somewhat ideal for systems such as OS. If we had to write an OS in a
procedural manner, then you would typically see an incredibly hard to follow code base
that resembles an Italian specialty in the form of spaghetti code as opposed to a well-
designed system.

By leveraging an event-driven paradigm for our systems, we greatly simplify our overall
program's structure and make it easier to increase its functionality or debug any issues in
the future.

The event loop
The main component of any event-driven Python program has to be the underlying event
loop. Let's take the event loop as an example. Within this event loop, we can (from
the official documentation):

Register, execute, and cancel calls
Launch sub-processes and the associated transports for communication with an
external program
Delegate costly function calls to a pool of threads

Essentially, all an event loop does is wait for events to happen before matching each event
to a function that we have explicitly matched with the said type of event.

Event-Driven Programming

[226]

A good example of this would be a simple web server. Let's say we have an endpoint on
our server that serves our website, which features a multitude of different pages. Our event
loop essentially listens for requests to be made and then matches each of these requests to
its associated webpage.

Each of the requests made to our web server in the preceding example would be considered
a separate event. These events are then matched to a set function that we predefine
whenever a said event is triggered.

Asyncio
Asyncio was introduced to the Python programming language in version 3.4 and added
some excellent functionality and it has been an overall hit with the Python community.

Asyncio is a module that allows us to easily write single-threaded, concurrent programs
utilizing coroutines, which we'll cover later on in this chapter. It also does a lot of other
clever stuff such as multiplexing I/O access over sockets as well as other resources, and
provides us with an array of synchronization primitives that allow us to write thread-safe
programs with relative ease.

Within the module, we have a number of distinct concepts as follows:

The event loop
Futures
Coroutines
Tasks
Transports
Protocols

Each of these concepts serve their own distinct purpose that can be intertwined to create
readable, highly-performant Python programs. We’ll look at each of these concepts in more
depth throughout the rest of this chapter.

The module features a wealth of different tools and classes for writing programs
in an event-driven manner, and I highly recommend that you check out the official
documentation at .

Event-Driven Programming

[227]

Getting started
In this example, we'll utilize the method, which returns an asyncio
event loop. We'll then run this loop using the method, which will
take in a very simple coroutine.

We'll be covering coroutines in greater detail later on in this chapter, but for now, it's
important to know that these coroutines are essentially functions designed for concurrent
execution within asyncio:

Upon execution of the preceding Python program, you should see the
 output on the console. This is a relatively simple program, but it features its

own event loop with which we can now build up our understanding of event-driven
programs.

Event loops
Now that we've created our very own simple event loop based program, it's time to explore
some of the possible methods associated with these event loops so that we understand how
to effectively interact with them.

The run_forever() method
The method does exactly what it says on the tin. This method starts your
event loop and blocks forever.

Event-Driven Programming

[228]

In this next example, we will create a never-ending event loop that constantly runs two
distinct coroutines:

The run_until_complete() method
The method is one that we've used previously in this chapter, and it
allows us to give our event loop a specific amount of work before terminating itself:

Event-Driven Programming

[229]

The preceding code will start an event loop and then execute the async function
before closing upon completion of the function.

The stop() method
The method again does exactly what it says on the tin. It will cause a loop that's
currently running indefinitely through the method to stop at the next
suitable opportunity:

The is_closed() method
The method simply returns if our event loop happens to have been
closed by calling the method:

Event-Driven Programming

[230]

The close() function
The function closes our non-running event loop and clears out any pending
callbacks. It does not wait for the executor to finish and brings our event loop to quite a
brutal end. I'd be careful using this in certain situations where a graceful shutdown is
necessary, as this could lead to complications with non-terminated connections to resources
such as databases and brokers:

Tasks
Tasks within asyncio are responsible for the execution of coroutines within an event loop.
These tasks can only run in one event loop at one time, and in order to achieve parallel
execution, you would have to run multiple event loops over multiple threads.

I like to think of tasks within asyncio in a similar regard to how we'd think of tasks when
used in conjunction with executors or pools, like we've demonstrated in the previous
chapters.

In this section, we'll look at some of the key functions that we can use in order to work with
tasks within our asyncio-based programs.

Example
In this example, we'll look at how we can define a generator function that will generate five
distinct coroutines for our event loop to schedule and execute. In order to schedule these
coroutines, we'll use the method, which you'll learn about in more
detail further on in the chapter:

Event-Driven Programming

[231]

Upon execution of the preceding program, you should see that the five tasks are
successfully generated, scheduled, and executed, and each of them prints out their current
status in the console:

$ python3.6 04_generator.py
Completed Tasks
Processing 0
Processing 1
Processing 2
Processing 3
Processing 4

The all_tasks(loop=None) method
The method returns a set of tasks for a given event loop. If no event loop is
passed in, then it defaults to showing only all of the tasks for the current event loop:

Event-Driven Programming

[232]

Upon execution of the preceding program, you should see a set of three coroutines printed
out to the console. These are denoted as pending as they haven't yet been scheduled to run
on our current event loop:

$ python3.6 16_asyncioTasks.py
{<Task pending coro=<myCoroutine() running at 16_asyncioTasks.py:3>>, <Task
pending coro=<myCoroutine() running at 16_asyncioTasks.py:3>>, <Task
pending coro=<myCoroutine() running at 16_asyncioTasks.py:3>>}
My Coroutine
My Coroutine
My Coroutine

The current_tasks() function
Gauging what current tasks are executing can be useful in a number of situations. If needed,
you could effectively iterate through the list of current tasks executing on the event loop
and attempt to cancel them if you wish.

In this example, we will schedule three distinct tasks using the function and
pass in our function as its input:

Upon execution, you should see that the coroutines are all successfully executed, and by the
time our main coroutine is executed, the only coroutine pending is the one currently
executing:

$ python3.6 16_asyncioTasks.py
My Coroutine
My Coroutine
My Coroutine

Event-Driven Programming

[233]

<Task pending coro=<main() running at 16_asyncioTasks.py:8>
cb=[_run_until_complete_cb() at
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/bas
e_events.py:176]>

The cancel() function
The function allows us to request the cancellation of futures or coroutines:

Upon execution of the preceding program, you should see that both and are
successfully executed. The third task that we scheduled, due to the cancel call we made, is
never actually executed.

Now, this is just a simple example of how we can cancel a task, and we did it in such a way
that we pretty much guarantee our third task is cancelled. However, out in the wild, there is
no guarantee that the function will definitely cancel your pending task:

$ python3.6 16_asyncioTasks.py
My Coroutine
My Coroutine
<Task pending coro=<main() running at 16_asyncioTasks.py:8>
cb=[_run_until_complete_cb() at
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/bas
e_events.py:176]>

Event-Driven Programming

[234]

Task functions
In the previous section, we looked at the functions that can be used with individual task
objects, but how can we work with a collection of different tasks? Well, the asyncio module
provides a series of task functions that allow us to work with and manipulate multiple tasks
at the same time with relative ease.

The as_completed(fs, *, loop=None, timeout=None)
function
The function allows us to work with the results returned from all of our
executed tasks as and when they are returned. These results could then be fed into a series
of other coroutines for further processing or just simply logged somewhere depending on
what your needs are.

We can use the function as follows and iterate over the completed futures
as and when they are returned:

The ensure_future(coro_or_future, *, loop=None)
function
The function will schedule the execution of a object--wrap it in
a future and then return a object:

The wrap_future(future, *, loop=None) function
This function acts as a simple adapter for converting
objects into objects.

Event-Driven Programming

[235]

You could then convert the created objects as follows:

The gather(*coroes_or_futures, loop=None,
return_exceptions=False) function
The function is a somewhat complicated beast. It takes in a set of coroutines or
futures and then returns a object that aggregates the results from the inputted set:

Upon execution of this code, you should see that both of the coroutines that we passed into
our function were successfully completed before the termination of our
program's event loop:

$ python3.6 16_asyncioTasks.py
My Coroutine 1
My Coroutine 2

The wait() function
The function simply blocks our program until all of the futures or coroutines passed
into the first parameter of this function have successfully completed:

Event-Driven Programming

[236]

Upon execution of this program, you should see that we’ve successfully created our four
coroutines, and they’ve all been successfully completed before our program terminated:

$ python3.6 16_asyncioTasks.py
My Coroutine 0
My Coroutine 1
My Coroutine 2
My Coroutine 3

Futures
We’ve already been exposed to one kind of future object when we were looking in depth at
executors and pools in , Executors and Pools. The module, however,
provides a slightly different implementation with which we can play in our Python
programs.

The object implementation of futures is almost identical to the
 object in terms of the underlying concepts. They are

created with the intention that they will eventually be given a result some time in the
future. They also feature all of the same methods that your standard future objects have.

There are, however, three distinct changes that have been outlined in the official
documentation, which can be found at

. These changes are worth noting to avoid frustration in the future:

The and function do not take a parameter
and raise an exception when the future isn't done yet
Callbacks registered with the format are always called
through the event loops
The class is not compatible with the and functions
in the package

Event-Driven Programming

[237]

Example
In this next example, we will look at how we can wrap a coroutine that we defined as

 in a object and then handle it as such within a main coroutine that
we’ll define.

In this example, it's important to note the use of before our call to
. The method is the method that both

schedules our coroutine for execution while also wrapping it in a future, so we have to
ensure that this is completed before we try to access :

Output
Upon execution of the preceding program, you should see that our coroutine has
successfully been converted into a future object, and we can access it with the same

 method that we'd typically expect to use:

$ python3.6 12_future.py
My Future Has Completed

Coroutines
Coroutines in asyncio are similar to the standard object that you'd find within the
threading module. By utilizing coroutines within our asyncio-based application, we are
essentially enabling ourselves to write asynchronous programs with the main exception
that they run in a single-threaded context.

Event-Driven Programming

[238]

They are quite possibly the most important part of the asyncio module as they are typically
where the magic happens within your event-based programs. If you look at any major
asyncio-based program, you should notice a heavy utilization of these coroutine objects.

There are a couple of different ways we can implement our own coroutines, the first of
which is to implement an async def function, which is a feature added to Python 3.5 and is
definitely the method I recommend the most. If we were to implement a coroutine using
this method, it would look something like this:

The second method is to utilize generators in conjunction with the
decorator:

Chaining coroutines
In certain situations, you may wish to chain the calling of your coroutines together in order
to achieve maximum performance within your Python systems.

Event-Driven Programming

[239]

The official documentation again has an excellent code sample that demonstrates this
concept of chaining very well. Within this code, we have two distinct coroutines denoted by
async def. The compute coroutine returns the summation of after having performed a
blocking sleep for 1 second.

Let's assume, however, that we want to rely on the result of a second coroutine within our
first coroutine as follows:

Upon execution of the preceding script, you should see that the following is outputted:

$ python3.6 06_chainCoroutine.py
1 + 2 = <coroutine object compute at 0x1031fc0f8>
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/eve
nts.py:126: RuntimeWarning: coroutine 'compute' was never awaited
 self._callback(*self._args)

This essentially states that the compute function within our method call was
never awaited and the program tried to carry on as if it had received the result.

In order to overcome this particular issue, we need to utilize the await keyword. This await
keyword blocks the event loop from proceeding any further until the called coroutine
returns its result. The main drawback of this, however, is that, in this particular example,
we lose the benefits of asynchronicity and we are back to standard synchronous execution.
It's up to you to determine where the use of await is necessary as it does give you very
quick and easy deterministic execution but you take hits on performance.

Event-Driven Programming

[240]

The coroutine instantiates a result variable that is equal to whatever the
compute coroutine returns:

If we look at the sequence diagram that comes from the official documentation for this
program, you should be able to see clearly how this chaining of coroutines is broken down
in real terms:

Event-Driven Programming

[241]

Output
If we then try to run the preceding program, you should see that our coroutines have been
successfully chained together and that our coroutine is now successfully
awaiting the result of our function:

$ python3.6 06_chainCoroutine.py
Compute 1 + 2 ...
1 + 2 = 3

Transports
Transports are classes that come included within the asyncio module that allow you to
implement various types of communication. In total, there are four distinct types of
transports that each inherit from the class:

This class has five methods that are subsequently transient across all four
transport types listed earlier:

: This closes the transport
: This returns true if the transport is closing or is already closed

: This returns optional transport
information.

: This does exactly what it says on the tin
: This returns the current protocol

Protocols
Protocols are a somewhat weird concept within the module. They are classes that
we define that must follow a predefined interface. Interfaces, if you've never encountered
them before, act as a kind of contract that ensures that a class is written in such a manner
that it meets the contracts criteria.

Event-Driven Programming

[242]

Again, the concept of protocols lies out of the remit of this chapter, but I'd encourage
research into them as they can be excellent modes of transports within your Python
programs. The official documentation for both transports and protocols can be found at

.

Synchronization between coroutines
The coroutines in asyncio run in a non-deterministic manner, and as such, there is still the
possibility of our code running into race conditions regardless of the fact that it's only ever
running on a single thread.

Due to the fact we can still be hit by dreaded race conditions, it's important to know how
we can use the previously covered synchronization primitives in conjunction with the

 module.

In this section, we'll take a look at locks, events, conditions, and queues, as well as look at
small examples of how these work within our event-driven Python programs. In the
interest of brevity, I'm only going to give full code examples for both locks and queues as I
feel these are going to be the two most commonly used concepts when it comes to
synchronization between your asyncio coroutines.

Locks
Locks within the module are almost identical in terms of practical functionality
when compared with the standard lock implementation you’ll find living within the

 module.

The module implementation allows us to put locks around critical sections of our
asyncio-based programs in order to ensure that no other coroutines are executing that same
critical section simultaneously.

In order to instantiate a lock from the module, we have to do something like this:

Let's take a look at a fully fledged example of this. We'll begin by defining an async
coroutine called , which will take in our lock as our parameter. Within this

 coroutine, we will attempt to acquire the lock using the keyword. Once
we've attained this lock, we then execute our critical status, which in this instance happens
to be a simple statement.

Event-Driven Programming

[243]

Within our main coroutine, we then instantiate the lock that we'll be passing to our
 function. We then await the execution of two instances of our

coroutine before completing:

If we were to execute this program, you should see that each worker, in turn, acquires the
lock and performs what it has to perform before releasing the said lock and effectively
allowing our second coroutine to take it up and execute its own critical section of code:

 $ python3.6 asyncioLock.py
<asyncio.locks.Lock object at 0x103121dd8 [locked]>
myWorker has attained lock, modifying variable
<asyncio.locks.Lock object at 0x103121dd8 [unlocked]>
myWorker has release the lock
<asyncio.locks.Lock object at 0x103121dd8 [locked]>
myWorker has attained lock, modifying variable
<asyncio.locks.Lock object at 0x103121dd8 [unlocked]>
myWorker has release the lock

Event-Driven Programming

[244]

Queues
The implementation gives us another near identical implementation to
that given to us in the standard queue module already present in Python.

In this example, we'll create both a producer and a consumer. The producer will produce
 between 1 and 5, while the consumer will try to read all of these articles. For

both the producer and consumer, we'll define an appropriately named coroutine. Within
our coroutine, we'll perform the command once every second that will
put an ID onto our passed-in .

Within our function, we'll constantly try to perform a get request in order to
retrieve an article ID from our shared queue. We'll then print out that we've consumed the
said article ID and proceed to try and consume the next article:

Event-Driven Programming

[245]

When we execute the preceding program, you should see a constant stream of print
statements coming from our coroutine. This demonstrates that we've
successfully utilized our object for both our producer and consumer and
have now achieved the communication that we desired:

$ python3.6 13_asyncioQueue.py
News Reader Consumed News Article {} 4
News Reader Consumed News Article {} 1
News Reader Consumed News Article {} 4
News Reader Consumed News Article {} 2
...

Events and conditions
Events, as we have covered in , Synchronization between Threads, allow us to block
multiple consumers from progressing from a set point until a flag has been set. We can
instantiate them as follows:

Conditions again allow us to block tasks until a point where they are notified that they can
continue by another coroutine. We can instantiate this as follows:

Semaphores and BoundedSemaphores
The module provides us with its own implementation of both the semaphore
primitive as well as the primitive that you would also find within the

 module.

This gives us the exact same functionality to the implementation we saw in ,
Synchronization between Threads. It is a counter that will decrement with each call to acquire
and increment with each call to release. Again, this allows us to do things such as
controlling the number of coroutines by accessing a given resource and can help ensure that
issues such as resource starvation don't become an issue within our programs.

Event-Driven Programming

[246]

These can be instantiated as follows:

Sub-processes
We’ve seen in the past that single process programs sometimes cannot meet the demands
required of them in order for our software to function properly. We looked at various
mechanisms in the previous chapters on how we can improve performance using multiple
processes, and thankfully, asyncio comes with the ability for us to still leverage the power
of sub-processes within our event-driven based programs.

I am not a fan of using this mechanism for improving performance as it can drastically
heighten the complexity of your programs. However, this isn't to say that there aren't
situations where this would be useful, and as such, I should make you aware of the official
documentation, which can be found at

Debugging asyncio programs
Thankfully, when it comes to debugging asyncio-based applications, we have a couple of
options to consider. The writers of the asyncio module have very kindly provided a debug
mode, which is quite powerful and can really aid us in our debugging adventures without
the overhead of modifying the system's code base too dramatically.

Debug mode
Turning on this debug mode within your asyncio-based programs is relatively simply and
requires just a call to this function:

Event-Driven Programming

[247]

Let’s take a look at a fully fledged example of this and how it differs from your standard
logging. In this example, we’ll create a very simple event loop and submit some simple
tasks to the event loop:

Upon execution of this, you should see the following chunk of code being outputted:

$ python3.6 11_debugAsyncio.py -Wdefault
DEBUG:asyncio:Using selector: KqueueSelector
DEBUG:root:My Main Function Hit
INFO:root:My Worker Coroutine Hit
WARNING:asyncio:Executing <Task finished coro=<myWorker() done, defined at
11_debugAsyncio.py:7> result=None created at
/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/asyncio/tas
ks.py:305> took 1.004 seconds
DEBUG:asyncio:Close <_UnixSelectorEventLoop running=False closed=False
debug=True>

You should notice the extra log statements that wouldn't otherwise have been included
within your logs. These extra log statements provide us with a far more granular idea of
what's going on with regards to our event loop.

In this simple example, the debug mode was able to catch the fact that one of our coroutines
took longer than 100 MS to execute as well as when our event loop finally closed.

Event-Driven Programming

[248]

You should note that this debug mode of asyncio is very useful for doing things such as
determining what coroutines are never yielded from and thus, killing your program's
performance. Other checks that it can be performed are as follows:

The and methods raise an exception if they are called
from the wrong thread
Logging the execution time of the selector
The warnings are emitted when transports and event loops
are not closed explicitly

This is just for starters. Overall, this is a rather powerful tool to have and gives you an
option other than your typical Pdb as a means of looking deeper into your programs. I
implore you to check out the official documentation of asyncio’s debug mode at

, as it provides a few
far more in-depth examples that you can peruse at your own leisure.

Twisted
Twisted in Python is a very popular and very powerful event-driven networking engine
that can be used for a huge range of different projects such as web servers, mail clients, sub-
systems, and more.

Twisted is an amalgamation of both high- and low-level APIs that can be effectively utilized
to create very powerful, elegant programs without masses of boilerplate code. It is both
asynchronous and event-based by design and could be compared to the asyncio module as
a more fully fleshed out older sibling.

If you are interested in learning far more on the Twisted framework then I
fully recommend Twisted Network Programming Essentials, 2nd Edition,
by Abe Fettig and Jessica McKellar

A simple web server example
Twisted is absolutely ideal for doing things such as serving websites. We can set up a
simple TCP server that listens on a particular endpoint that can serve files from a relative
file location to someone requesting it in a browser.

Event-Driven Programming

[249]

In this example, we'll set up a very simple web server that serves local content from a
directory within the same directory as your program.

We will first import the necessary parts of the and
modules. We will then define an instance of the file resource that maps to the directory we
wish to serve. Below this, we will create an instance of the site factory using our newly
defined resource.

Finally, we will map our factory to a TCP port and start listening before calling
, which drives our entire program by handling things such as accepting

any incoming TCP connections and passing bytes in and out of the said connections:

We'll serve this very simple file, which features a tag within its body. Nothing
special, but it represents a good starting point for any website:

Upon running the preceding code, navigate to in your local
browser, and you should see our newly created website in all it's glory being served up.

Event-Driven Programming

[250]

This represents just a very small fraction of what the Twisted framework is capable of, and
unfortunately, due to concerns for the brevity of this book, I cannot possibly divulge all of
its inner workings. The overall power of this framework is incredible, and it has been a joy
working with it in the past.

Gevent
The networking library is based purely on top of coroutines. It's very similar in
nature when compared to Twisted and provides us with a similar range of functionality
that we can leverage to build our own network-based event-driven Python applications.

Its features include the following:

A fast event loop
Lightweight execution units based on greenlets
An API that reuses concepts from the Python standard library
Cooperative sockets and SSL modules
TCP/UDP/HTTP servers
Thread pools
Sub-process support

It also includes a number of other features. It features a healthy collection of internal
methods and classes that enable us, as developers, to develop some pretty powerful and
flexible systems. If you are interested in reading up on everything that it provides, then I
suggest you check out the official documentation, which can be found at

.

Event loops
Much like the module, utilizes the concept of an event loop. This event
loop is incredibly efficient in design as it handles events as and when they are registered
within the event loop. It lets the OS handle the delivery of event notifications and focuses
on making real progress on the events as opposed to wasting valuable resources polling for
events.

Event-Driven Programming

[251]

Greenlets
The core of the framework is the greenlet. Greenlets, if you haven't worked with
them before, are a very lightweight coroutine written in C that are cooperatively scheduled.
They provide us with a very lightweight thread-like object that allows us to achieve
concurrent execution within our Python programs without incurring the cost of spinning
up multiple threads.

These lightweight pseudo threads are spawned by the creation of a greenlet instance and
subsequently call its start method. These lightweight pseudo threads then execute a certain
amount of code before cooperatively giving up control and allowing another pseudo thread
to then take over. This cycle of repeated work and then giving up is repeated over and over
again until the program has accomplished it's target and terminated.

We can define greenlets through the use of functions such as spawn as follows:

Alternatively, we can also define them through the use of sub-classing as follows:

Event-Driven Programming

[252]

Simple example-hostnames
In this simple example, we'll introduce the use of gevent within your Python applications.
We'll write something that takes in an array of three distinct URLs, and then, we'll spawn
an array of gevents in order to retrieve the IP addresses of these URLs using the

 function.

We'll then use for these gevents, giving them a timeout of 2 seconds, and
finally, we'll print the array of IP addresses this returns:

Output
When you run the preceding program, you should see output that looks similar to this one:

 $ python3.6 19_geventSimple.py
['216.58.211.100', '93.184.216.34', '151.101.60.223']

Monkey patching
One concept that was new to me when I was researching the gevent library was the concept
of monkey patching. It has absolutely nothing to do with monkeys unfortunately and is,
instead, focused on the dynamic modification of a class or module at runtime.

A great example of how this works is if you imagine you have a Python program that
contains a method that retrieves a value from an external dependency such as a database, a
REST API, or something else. We can utilize monkey patching as a means of stubbing out
this method so that it does not hit our external dependency when we are running our unit
tests.

Event-Driven Programming

[253]

Why does this necessarily fall under a gevent though? Well, in gevent, we can utilize
monkey patching in order to carefully replace functions and classes with cooperative
counterparts. An example of how powerful this can be is if you consider the standard socket
module. DNS requests are by default serialized and, thus, are incredibly slow when done in
bulk.

In order to perform these DNS requests concurrently, we can utilize monkey patching!
Using , we can monkey patch the functions and classes in the socket
module with cooperative counterparts, thus solving all our performance issues:

If you want to learn more about this magical performance improving technique, then I
recommend you check out the official documentation at

.

Summary
In this chapter, we covered the paradigm of event-driven programming before covering
how asyncio works and how we can use it for our own event-driven Python systems.

We went in depth into the asyncio module and the various ways you can do things such as
construct your event loops, chain coroutines within this loop, and set up event handlers, to
name but a few things.

In the next chapter, we'll look at how you can create reactive programs using the powerful
 module and cover how the reactive programming paradigm differs from your typical

event-based programs.

110
Reactive Programming

While event-driven programming might revolve around events, in reactive programming,
we deal purely with data. In other words, every time we receive a new piece of data, we
consider this to be an event. Due to this definition, you could technically call it a branch of
event-driven programming. However, due to its popularity and the differences in the way
it does things, I couldn't help but put reactive programming in a chapter of its own.

In this chapter, we will dive deeper into one of the most popular libraries available in
Python when it comes to reactive programming, . We'll cover in depth some of the
features of this library and how we can utilize this to create our own asynchronous
programs.

We'll come to terms with some of the basics necessary of to get us started:

Dealing with observers and observables
Lambda functions and how we can use them
The multitude of operators and how we can chain these to achieve a desired state
The differences between both hot and cold observables
Multicasting

We'll also take a brief look at the library, and how this differs from
and how we can leverage that in certain scenarios. You should note that some of these
examples from the official documentation have also been covered in a video course called
Reactive Python for Data Science by Thomas Nield. I highly recommend this course as Thomas
covers a lot of material that I've not had a chance to in this chapter. You can find this course
at .

Reactive Programming

[255]

Basic reactive programming
Reactive programming is a paradigm that is totally unlike that of your more traditional
imperative style of programming. Being aware of the strengths and weaknesses of reactive
programming could help you turn software disasters into potential successes.

With reactive programming, we can totally destroy the imperative style and instead focus
on representing our data as a stream of events. We can subscribe to these subsequent
streams and take action upon receiving these events. This helps us simplify our system's
flow that could quickly become very unwieldy and unmaintainable if we were to follow a
more traditional architecture and style.

Reactive libraries take away the complexity of us having to push our events to various
functions within our systems, and enable us to effectively work with data as queryable,
real-time streams. We can essentially fashion programs that will run infinitely against an
infinite stream of events such as constant stock quotes or social media interactions.

This reactive programming paradigm has been taken up by the likes of data scientists who
may have streams of statistical data or sensory data coming in, which they have to analyze
and make decisions.

Maintaining purity
In a reactive paradigm, it's important that we try to make all our transactions stateless. By
enforcing stateless transactions, we essentially reduce the number of potential side-effects
that could impact our program's execution.

This pure style of programming is one that functional programmers tend to live by, and it's
proving to be an incredibly powerful paradigm when it comes to designing highly resilient
distributed systems. Overall, it's something that I would try and follow right from the start
as you develop these new systems.

ReactiveX, or RX
Reactive Extensions, or RX, first hit the scenes in around 2010 and has been heavily adopted
by large tech companies such as Netflix using . It has since grown into something
far bigger and more prevalent within the industry.

Reactive Programming

[256]

It comes in many different flavors for each of the different programming languages
currently out there. The most popular of these are as follows:

 for Java
 for JavaScript
 for Python

 for Swift

The full list of Rx flavors can be found at
.

Reactive Extensions for Python, or as it has been condensed to, is a library for
composing asynchronous and event-based programs using observable collections and
LINQ-style query operators in Python. I first came across a similar version of ReactiveX
when I was working with the new Angular framework, and my experience with it was
great. It let me turn a web socket stream into an observable, which could subsequently be
watched from within my Angular application and displayed, in real-time, in the browser.

 is equally useful, and it paves the way for you to write some incredibly interesting
applications while handling the underlying complexity of dealing with observers and
observables.

One of the best examples I could envisage this library being used is in, say, a stock trading
application. You could in theory have an API that constantly checks the price of certain
stocks and in turn stream it back to your -based stock trading application if certain
conditions were met. Say, for instance, a stock that you own falls in value by 20 percent, you
could subscribe to this type of event and then react to this situation in whatever way you
wish, be it to sell off the stock or to buy more of it.

Installing RxPY
Installing can be done with ease using pip as follows:

pip install rx

You should note that runs on both Python 2.7+ and 3.4+ as well as and
.

Reactive Programming

[257]

Observables
Observables are the most important part of our applications. We define these
observables that can emit events to any observer that is currently registered to receive
events from the said observable. The key thing to note is that these observers utilize a push
mechanism in order to notify subscribers of new events as opposed to a pull mechanism.

Creating observers
In RxPY, nearly anything can be turned into an observable, which makes it immensely
powerful as a library, and when it comes to consuming from these observables, we have a
many options. If we need to, we could utilize a quick and easy lambda function or we could
define a fully fledged class that handles it all for us.

Example
In this example, we’ll implement , which will subclass the
class. This will implement the three necessary functions required: ,

, and . Each of these three functions has an important role to
play within our observers:

: This is called whenever the observer receives a new
event.

: This is called whenever our observable notifies it that it
has completed its task.

: This is called whenever we wish to handle error
cases. Thankfully, in our simple example, we shouldn't have to worry about this.

This will be a relatively simple example that will just print out the values received when the
 function is called, but it should give you the basic idea of how to define your

own observers.

Note: The following code snippet was taken from the official
documentation.

Reactive Programming

[258]

Let's examine this code snippet that features a very simple observer and observable:

When we execute the preceding Python program, you should see that the five distinct
strings are all printed out one after the other before the function is called.
This signals to our observer that there will be no further events, and the program then
terminates:

$ python3.6 07_createObservable.py

Received Alpha

Received Beta

Received Gamma

Received Delta

Received Epsilon

Done!

Reactive Programming

[259]

Example 2
In the following example, we will take a look at how to build a very simple stock trading
system that decides whether or not to buy a stock. If the stock matches the criteria, then we
will emit a buy order to our observer, which then processes it. I should probably point out
that while this might not make you a millionaire, I do expect something in the way of
royalties in the off chance that it does:

Reactive Programming

[260]

Breaking it down
In our code sample, we defined a dictionary array that stores our ticker symbols marked by
TCKR and the stock prices of each of these stocks, represented by PRICE. It should be noted
that these are entirely fictitious and that their stock prices don't mean anything.

We then went on to define our observable, which iterates through this
array of stocks and prices, and, using a very complex algorithm, checks to see if we should
buy this stock. If the stock meets our criteria, then we emit an event with the stock's TCKR
as the key for the event. Once we've finished iterating through all of our stocks, we then call

, which informs our observers that we have finished working our way
through the stocks and no more buy orders should be expected.

Finally, below our class definition, we created our Observable object,
which takes in our function as its main argument. We then subscribed
to this observable with a new instance of our class.

Output
If we were to now run this program on our machine, it would iterate through our five
stocks and compare their prices and see if they were greater than 100. It sees that APPL,
TSLA, and MSFT, all meet this criteria, and it emits these buy instructions. Our

 object receives these emissions, and then acts accordingly and prints out
that it received the orders.

Once all five stocks have been looped through, the observable emits that it's finished and
our object then shuts up shop:

$ python3.6 00_observables.py

Received Instruction to buy APPL

Received Instruction to buy TSLA

Received Instruction to buy MSFT

All Buy Instructions have been received

Lambda functions
The preceding way can sometimes be rather verbose for some scenarios where an entire
class is unnecessary. In scenarios like this, we can engage the help of something called
lambda functions.

Reactive Programming

[261]

Lambda functions, if you haven't encountered them yet, are constructs that allow us to
create anonymous functions. In certain situations such as this one, it can be quite powerful.
Using lambda functions, we could effectively rewrite the preceding program as shown in
the next example.

Example
In this example, we’ll examine how you can utilize a simple lambda function in order to
"execute" a trade on a given stock ticker:

Breaking it down
In the preceding code, we kept the same observable that we implemented in the previous
example, but you'll notice one key difference. We no longer have this rather verbose

 class definition and have replaced it with a far more terse one liner, which
features all of the same functionality:

Reactive Programming

[262]

In this particular example, we minimized our code base and made our code more
maintainable as we don't have to pour over an entire class definition to see what's
happening. However, it should be noted that while this was advantageous here, trying to
cram all of your code into a single lambda expression could actually hamper your code's
readability and make maintenance work and bug fixes a nightmare.

On_next, on_completed, and on_error in lambda form
So, one key thing you should notice from the preceding example is that while it is more
terse, we seem to have lost the ability to define the , , and

 functions as we had done in the previous example. Fear not though, we can still
implement these three functions as lambda functions as follows:

Reactive Programming

[263]

Output
In the preceding code, within our source.subscribe call, we've defined the three distinct
lambda functions necessary for our subscriber, and we've mapped them to their appropriate
calls. You should see an almost identical output to the previous program as well as our
newly added Completed trades message, which lets us know that our
function has successfully mapped:

$ python3.6 10_allLambda.py

Received Instruction to buy APPL

Received Instruction to buy TSLA

Received Instruction to buy MSFT

Completed trades

Operators and chaining
Operators work as an intermediary between the emission and the subscriber. They can
effectively transform raw data being outputted into a format that is more pleasantly
digested by your subscribers.

In total, features over 130 distinct operators from which you can derive new
observables, and the fact that we can chain these operators together make them very
powerful indeed. It's important to note that most operators that operate on an Observable
also return an Observable that can be subscribed to. It is due to this fact that we can do cool
things such as chain multiple operators together to achieve our desired end state.

Filter example
Let's first take a look at how we can chain some very simple operators together in order to
only print out the lengths of a string only when it is above five characters in length.

We'll take an array of five strings, map them to their lengths using the operator,
and then filter these for all strings less than five using the operator. We'll then
have a subscriber subscribe to the mapped and filtered emissions using a simple lambda
function that prints the length:

Reactive Programming

[264]

Breaking it down
In the preceding code example, we first defined our source using the
function, passing in an array of five letters of the Greek alphabet into it.

We then went on to map the lengths of these strings into a lengths variable using
 and provided a function that transforms our string into it's length.

Then, we went on to filter these lengths using a function that returns only those
values that match the greater than or equal to five criteria.

Finally, we subscribed to this filtered stream of events using a final function that
merely prints out the received lengths of each string.

Chained operators
If we were to represent the preceding example using the chaining mechanism that we
talked about earlier, then it would look something like this:

This code features absolutely no difference in functionality to the previous code example
and is in fact, in my opinion, easier to read as we don't have to follow where the output of
each operator is being stored.

Reactive Programming

[265]

The different operators
In this section, we’ll take a very brief look at a handful of different operators available
within the . Unfortunately, for the sake of brevity, I will have to omit some from the
list as I can't possibly cover the 130+ different operators available within this section of the
book. If you do, however, want to see a more complete list, then I implore you to check out
the official list of operators at
This list is language agnostic and just gives you an overview of what is available, and it's a
fantastic resource to have bookmarked when working with ReactiveX.

Creating observables
When it comes to creating observables in , we have quite a large number of options. So
far, we've leveraged operators such as Create and From as well as Interval in order to create,
but there are more out there.

You have a standard Create operator, which creates an Observable from scratch by calling
the observer methods programmatically. Defer, on the other hand, only creates an
Observable at the point at which an observer subscribes and will actually create a
completely unique Observable object for each call to subscribe.

Transforming observables
When it comes to transforming observables, we have slightly fewer options than when it
comes to creating observables. We have the following operators that we can utilize to
transform any of the observables within our Python programs.

The few most notable operators could be defined as follows:

: This buffer periodically gathers items from an already created
Observable and bundles it into a single emission. We can effectively use this to
somewhat stem the flow of systems that output millions upon millions of
emissions.

: We’ve already had a look at combining observables using the
 operator, but the operator gives us an alternative solution

when it comes to merging these observables into one Observable.

: This transforms all emissions from a given Observable and then applies a
function to each of the said items.

Reactive Programming

[266]

There are other operators such as scan and window operators that lie within this remit, but
these should be adequate to get you started.

Filtering observables
RxPY provides quite a deep API for filtering observables as well. We've already used the de
facto operator in one of our previous examples, but there are others such as

, , , and , which I recommend you get familiar with.

Again, the following list contains only a subset of the available operators when it comes to
filtering:

: This stops an Observable from emitting duplicate items. This is the
very operator that takes care of the complexities for filtering lists of duplicates for
you.

: This takes a subset of the first n items emitted by an Observable.

: This returns the element at position n emitted by an Observable.

Error-handling observables
Error handling is something that every programmer must consider for essentially every
piece of software on or off the planet. -based programs are no exception, and
thankfully, provides us with two very helpful error-handling operators:

Hot and cold observables
Within ReactiveX, we have this underlying concept of hot and cold observables that you
should be aware of when creating observables with multiple subscribers.

Reactive Programming

[267]

Within an program, we can have any one of the following observables:

 observables: These actively publish notifications regardless of whether or not
they have subscribers

 observables: These only emit when they have subscribers listening in on
them

Say, for instance, you have an observable that watches for news on particular stocks and
shares. You currently have one subscriber listening into this observable and acting upon the
emissions. Now, imagine a scenario where we need to add a second or even a third
subscriber to this Observable.

In this particular scenario, our Observable would not replay the already played out events
to our second and third subscribers. It would instead just ensure that they receive its
subsequent emissions. This would be an example of a observable.

If our Observable was indeed able to replay the already played emissions, then it would be
an example of a Observable.

Emitting events
In RxPY, we are able to create composite observables that work with both data and normal
events that you'd find in event-driven programming the same way.

Example
In the next example, we will look at how we can combine data emissions events with
keyboard input so that we can kill our stream of events should we wish to:

Reactive Programming

[268]

Breaking it down
What we've essentially done in the preceding code is create an observable that emits the
result of i concatenated with Mississippi every 1,000 milliseconds. We then subscribed to
these events with a very simple lambda function that simply prints out whatever has been
emitted.

We included the call to in order to block until we wish to end the program. This is
due to the fact that operates on a separate thread, and without
this call, our program would end somewhat prematurely.

Output
This then leaves us with an output that looks something like this until the point at which we
quit the program:

0 Mississippi

1 Mississippi

2 Mississippi

3 Mississippi

4 Mississippi

5 Mississippi

6 Mississippi

...

Multicasting
So far, in the examples that I’ve presented earlier, we’ve only dealt with cases where there
has only been one Observable and one Observer. However, one of the most powerful
aspects of the library is the fact that our observables can multicast emissions out to
numerous subscribers.

The need for multicasting comes from the fact that having multiple subscribers subscribe to
the one observable would result in discrepancies with regards to the events that both of
these subscribers receive. However, using multicasting, we can effectively eliminate these
discrepancies and ensure that all of our subscribers, regardless of how many we have, will
receive identical events.

Reactive Programming

[269]

Take, for instance, the following lines of code:

This code features a simple observable that emits three random events, each containing a
generated random number that ranges anywhere from 1 to 100,000. If we were then to
execute the preceding code, you may have expected to see both subscriber 1 and subscriber
2 receive the same events. However, if we have a look at the output of the said program,
you’ll see this isn’t the case:

$ python3.6 03_multicast.py

Subscriber 1 Received: 21097

Subscriber 1 Received: 19863

Subscriber 1 Received: 68053

Subscriber 2 Received: 69670

Subscriber 2 Received: 11348

Subscriber 2 Received: 8860

Example
In this example, we’ll extend the previous example and flesh it out a bit. We'll define a

 class, which will subclass the class. This class will implement the
, , and functions and simply print out any value

passed to them.

We'll then use the same Observable that we defined in the previous
example and publish these emissions using the function.

Below this, we'll subscribe three distinct subscribers to our Observable before calling the
 function, which defines that all our subscribers are ready so that they receive

the same stream of emissions:

Reactive Programming

[270]

Output
You’ll see in the output of our program that all three subscribers receive all three of our
news events before finally receiving the completed emission:

$ python3.6 14_multicasting.py

Subscriber: Grant Received: 211

Subscriber: Barry Received: 211

Subscriber: Sophie Received: 211

Subscriber: Grant Received: 7120

Subscriber: Barry Received: 7120

Subscriber: Sophie Received: 7120

Subscriber: Grant Received: 2802

Subscriber: Barry Received: 2802

Subscriber: Sophie Received: 2802

Subscriber: Grant Received Events

Subscriber: Barry Received Events

Subscriber: Sophie Received Events

Reactive Programming

[271]

Combining observables
There might be times where we have two distinct observables that emit data at different
times. We may, in this scenario, wish to combine both of these observables so that we still
effectively have one Observable that our subscribers can subsequently subscribe to.

If we imagine a stock trading program that places stock trades based off breaking news,
then you would probably have multiple observables both watching for new news posts and
then emitting these events to other components within our system. In this scenario, we
could effectively aggregate all these observables into one golden news source that could
effectively feed the rest of our stock trading program.

When it comes to actually implementing the component that combines our observables, we
could leverage a number of different operators available to us within . These are as
follows:

/ /

It’s worth playing around with these and trying to fully understand them as each of them
can be leveraged differently within your programs.

Zip() example
In this example, we’ll use the operator in order to combine both the letters
Observable as well as the intervals Observable into one Observable. Then, we will use the

 operator in order to subscribe a very simple Observer to this newly
combined Observable object:

Reactive Programming

[272]

Output
Upon running the preceding program, you should see the following output in the console.
First, you should see the input blocking the program from prematurely ending and then a
stream of four tuples, the first value of which represents the relative value in list1 times the
current interval value, and the second of which is just the interval value:

$ python3.6 06_combining.py

Press any key to quit

(0, 0)

(38, 1)

(86, 2)

(69, 3)

The merge_all() operator
Another option to combine your observables is to use the operator in order to
merge two or more distinct observables into one observable that we can subscribe to.

In this example, we’ll define two very simple observables from two arrays of numbers. We
will then create an array of observables that we’ll call "sources" and subsequently use the

 operator on this newly created array in order to combine them all into an
amalgamation of all of our two original observables:

Reactive Programming

[273]

Output
When you output this, you should see a very eclectic output that accounts to a combination
of both of our original observables:

$ python3.6 11_mergeAll.py

23

38

1

43

2

23

3

4

Press any key to quit

Concurrency
While the majority of code covered within this chapter up to this point has been of a single
process nature, it is definitely worth noting that concurrency is still achievable and
provides two distinct operators that allow for concurrent execution:

Both of the preceding operators require a scheduler, which can be provided using
something like in order to create a pool of reusable worker
threads.

Reactive Programming

[274]

Example
We’ll again leverage the code that the official library provides in its documentation as it is a
fantastic example of just how you can achieve concurrency within your own
programs.

In this example, we’ll use the class as our
necessary cross-thread scheduler. We will then create three distinct observables that emit
events at various intervals:

Reactive Programming

[275]

Output
When we run this program, you should see that we’ve successfully achieved concurrent
thread execution within our program. You should see the initial “Press any key to exit”
print out, which blocks until it is satisfied.

We will then see each of our three processes execute concurrently, and their constant stream
of print statements is thoroughly intertwined and not executed synchronously:

$ python3.6 09_concurrency.py

Press any key to exit

PROCESS 1:<concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_0 Alpha

PROCESS 2: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_1 1

PROCESS 1: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_0 Beta

PROCESS 3: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_2 0

PROCESS 2: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_1 2

PROCESS 3: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_3 100

PROCESS 1: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_0 Gamma

Reactive Programming

[276]

PROCESS 2: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_1 3

PROCESS 3: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_3 200

PROCESS 2: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_1 4

PROCESS 1: <concurrent.futures.thread.ThreadPoolExecutor object at

0x102abda20>_0 Delta

...

PyFunctional
 is a library that’s worth noting at this point as it follows a similar paradigm

to that of reactive programming. It essentially enables us to create functional programs
using the Python programming language.

Both functional and reactive programming tend to utilize pure functions that feature no
side effects and store no additional state. We define functions that will always return the
same results regardless of what else is happening within our programs. The key difference
between both and is the fact that while we handle streams in a very
similar fashion in both libraries, the way that this data is handled is somewhat different.

 is far more focused on the way that data and subsequently events are handled within
systems. is more focused on the transformation of data using functional
programming paradigms.

 is specifically useful as it allows us to easily create data pipelines using
chained functional operators. The library was originally conceived by a PhD student in AI
called Pedro Rodriguez and draws inspiration from both Spark and Scala and tries to enable
us to write very elegant code using style chained operators in order to easily
manipulate our data streams.

Installation and official docs
You can install PyFunctional using the pip installer as follows:

pip install pyfunctional

This allows us to import from the functional module, which you will see an example of in
the next example section.

Reactive Programming

[277]

For more comprehensive documentation on the module, I recommend you
check out the official GitHub repository for the module, which can be found at

, or the official site, which can be found at
.

Simple example
Let's take a look at a very simple example to show you how you can write functional
programs using the module. This will act as a toe-dipping example that
should hopefully give you the gist of some of the basic things you can accomplish with the

 module.

In this example, we’ll leverage , which acts as the stream object with which we can
iterate and manipulate. We’ll first map this sequence using a lambda function that doubles
every value. After this, we’ll filter for values where is greater than , and finally, we’ll
reduce the sequence into a summation of all the remaining values:

Output
You should see that is printed out as the sum of our map; filter and reduce chaining:

$ python3.6 12_pyFunctional.py

Results: 14

Streams, transformations, and actions
Within PyFunctional, there are three distinct types of functions that we can segregate its
API into:

Streams

Transformations

Reactive Programming

[278]

Actions

Each of these have their own distinct roles to play within the library. With streams, we can
read in the data that we wish to manipulate or utilize. Transformations are the functions
that can transform the data from these streams, and actions cause a series of these
transformations to evaluate to a concrete value.

When we call and pass data into it as an argument, we are essentially converting the
data into a stream, which we can transform and manipulate to our will.

Filtering lists
When it comes to tasks such as filtering, provides an incredibly diverse
range of operators that we can leverage to transform our streams into our desired results.

In this example, we'll show just how simple it is to do something such as filter an array of
stock transactions before mapping the results to an array and then summing this array to
find the total costs of a given transaction.

We'll leverage the module from collections in order to define a tuple.
With this structure, we'll then define an array of stock transactions that
consists of the stock ticker and the cost of, the said transaction:

Reactive Programming

[279]

Output
Upon execution of the preceding program, you should see that we are able to successfully
filter our array of stocks for all TSLA stock transactions. We will then map and sum our
filtered list and output the total cost of these transactions to the console. The output should
look something like this:

 $ python3.6 13_pyfilter.py
Total cost of TSLA transactions: 950

Reading/writing SQLite3
The library is surprisingly good at working with SQLite3 and features a
multitude of different operators, which turn a traditionally more complex task of querying
DBS and writing to them somewhat more palatable.

For instance, when querying a database, we can leverage
. in order to query a number of rows from a database and transform

them into a list. This is just pure syntactic sugar and makes your code bases more succinct
and ultimately more readable.

The official example they give in their documentation is when querying all the users from a
database. They pass in the relative database path to their database and then call

 in order to return all users. The operator then
transforms the rows returned by the SQL query back into your standard list in Python that
you can manipulate and bend to your will:

When it comes to the all important task of writing things back to a database in , we
can have a range of different options:

Reactive Programming

[280]

These all represent distinct ways of writing a list back to our metaphorical user table for this
section.

Compressed files
PyFunctional handles compressed files that have been compressed with , ,
and with ease. It automatically handles the detection of whether or not a file is
compressed, so you can essentially work with compressed files as if they were no different
from normal files.

This may impact the speed at which you are able to manipulate these files though, as there
is the overhead of working with compressed data. However, in my experience this hasn't
been an extreme overhead.

Reactive Programming

[281]

When it comes to writing back to these files, you simply have to set the compression
parameter to the following functions:

 or for compression
 or for compression

 for compression

This parameter exists on every function that exists within , and the
combination of this and the automatic detection makes working with compressed files an
absolute delight.

Parallel execution
In order to enable parallel execution in your based Python program, there is
only one real change you need to make to your code base. This change is replacing your
usage of seq with .

However, it should be noted that there are only three operations that currently support
parallel execution:

By making this small change to your program, you change your uni-process code into code
that utilizes the multiprocessing module, and thus, you should see a considerable speed
improvement on some of the computationally expensive operations within your code base.

Reactive Programming

[282]

Summary
In this chapter, we covered some of the key principles of reactive programming. We looked
at the key differences between both reactive programming and typical event-driven
programming, and we dived deeper into the specifics of the very popular Python
library. We covered observers and observables, emitting events, and multicasting to
numerous subscribers.

Hopefully, by now, you have an appreciation of some of the nuances of reactive
programming, and you’ll now be able to piece together your own reactive systems. You
should also have some insight into how you can construct functional programs using
Python, using this newly covered topic of operators in conjunction with .

In the next chapter, we’ll discuss how you can improve the performance by leveraging the
true power of your graphics card to perform tasks such as data analysis and research into
big data. We’ll see how to utilize the hundreds to thousands of cores that are all working in
parallel and reach new performance heights using libraries such as and .

111
Using the GPU

In this penultimate chapter, you'll learn about the various ways we can leverage the power
of the GPU in order to greatly improve the performance of our Python programs. We'll take
a general look at what GPUs are and what sort of advantages they can give us should we
leverage them in certain scenarios within our Python programs.

We'll then look at the various Python wrappers that will enable us to use these GPUs for
our more general purpose based programs without having to dive too deeply into the finer
details.

Libraries such as are incredible in the sense that they enable programmers to create
these high-performance applications without having to learn far more complex and low-
level languages such as C and C++.

In this chapter, we'll explore a number of different libraries that are quite widely used in the
GPU programming ecosystem. We'll cover the basics of how to get up and running with
these libraries before showing how these concepts can be translated to run on top of both
GPU and APU hardware. The libraries that we'll cover are as follows:

However, first, let's look more closely at the advantages that GPUs provide over your more
traditional CPUs.

Using the GPU

[284]

Introduction to GPUs
Graphics Processing Units, or GPUs as they are more typically shortened to, are typically
marketed to and focused on the hardcore gaming market. It's typically gaming enthusiasts
that expect an incredibly high-level of performance from these graphics cards in order to
ensure that they have the smoothest possible experience while playing computationally
expensive 3D video games.

Video games require millions upon millions of calculations per minute to be done in order
for the computer to know exactly where to render 3D objects in a game. A typical scene
within a game could contain anywhere from a handful of simple 3D objects to thousands of
incredibly complex models. So, with each frame, we need to decide their exact relative
positions, scales, rotations, and a whole multitude of other factors in order for them to be
successfully rendered.

Even models that we deem to be relatively simple could be made up of hundreds or even
thousands of different vertices. Look at the following car model; this would be a relatively
low-polygon car by most modern games standards. However, if you look at the likes of the
wheels, each of those wheels probably has 200-300+ distinct vertices:

Using the GPU

[285]

When it comes to animating objects such as the preceding one, we have to multiply each of
these individual vertices by translation and rotation matrices in order for us to obtain their
updated position. Consider the fact that there might be hundreds of other objects within our
scene such as buildings, characters, and so on, and the number of vertices we have to
translate becomes daunting. Multiply this by the minimum 24-30 frames per second we
have to do this for, and you should see that this isn't exactly an easy exercise for any
machine.

Why use the GPU?
The challenge of calculating such a high number of matrix translations per second is
typically too much for an average CPU. Unfortunately, it hasn't been designed to handle
such a huge number of requests per second in a highly efficient and parallel manner. This is
why we require some dedicated hardware that features thousands of individual cores that
are able to handle the thousands of millions of requests that are thrown at it.

In , Parallelize It, we touched briefly on the SIMD architecture style that these
graphics cards follow. We looked at how it's excellent for doing this style of work, but we
never looked at how it could be used for alternative means such as data science and
machine learning.

These GPUs are absolutely phenomenal at handling the high-intensity graphics calculations
that get thrown at it, but it's important to note that these can be repurposed very easily to
other tasks such as statistical analysis, data mining, cryptography, and more. In this
chapter, we'll look at some of the different libraries that wrap around our graphics cards,
and I'll introduce you to some of the different ways that we can utilize these libraries.

Data science
In the coming years, we will see a huge increase in the demand for data scientists. The vast
majority of these jobs will be in industries such as finance where you'll be tasked with
analyzing patterns and determining key characteristics of potentially billions of stock
transactions.

It's a blend of art and science that requires an incredible amount of computational power in
order to apply models and processes to vast quantities of data that have been captured over
time by some of the largest companies in the world.

Using the GPU

[286]

Python happens to be one of the most prevalent languages used within this field primarily
due to the fact that expressing models in Python is relatively simple.

Branches of data science
When it comes to data science, there are a number of different sub-branches, each which
garners a lot of interest and is a fully qualified area of study in its own right. These main
areas of study are as follows:

Machine learning

Classification

Cluster analysis

Data mining

We will talk more about them in the upcoming sections.

Typically categorized into either supervised or unsupervised learning, machine learning
algorithms focus on iterating over a training dataset as many times as possible while
tweaking configuration to achieve optimal results. Once the algorithm has been run against
a subset of the data, it is typically released on the remaining data in order to try and predict
how that data will then behave.

Classification is a subset of machine learning, which aims to classify distinct items into a set
of categories. It follows the same process as machine learning in which it will train itself on
a set of sample data that has already been classified. It will then attempt to classify new
items into their correct categories based on what it has learned from this sample data.

Cluster analysis is the act of grouping sets of data into a set of clusters where each of the
elements within these clusters follow similar characteristics. This is typically used heavily in
information retrieval where search engines will try to use algorithms such as agglomerative
clustering in order to group web pages together so that they can be returned when specific
search terms are entered.

Using the GPU

[287]

The following image shows an example of a number of points of data. Using techniques
such as agglomerative clustering, we can attempt to group these data points into three
distinct categories. Imagine these data points were individual web pages that we had
crawled. Then, let's imagine that the yellow pages are about cats, the blue pages are about
dogs, and the red pages are about turtles. Agglomerative clustering allows us to effectively
cluster these together:

Data mining is the process of trying to extract useful information from massive sets of data.
It typically follows a five-step process:

Identifying the data you wish to examine.1.

Preprocessing this information.2.

Transforming this data.3.

Mining the data.4.

Interpreting and reporting the results.5.

Using the GPU

[288]

For a good book on this subject, I would recommend Big Data: Using Smart Big Data,
Analytics and Metrics to Make better Decisions and Improve Performance by Bernard Marr. This
focuses purely on the preceding process, which you can then action upon using any of the
following Python libraries.

CUDA
In the upcoming sections of this chapter, we'll cover libraries that rely heavily on the use of
CUDA. Therefore, it's very important that you are familiar with what CUDA is precisely in
the grand scheme of things and how this relates to the libraries that we'll ultimately use.

CUDA is a parallel computing platform and an API that was conceived by the NVIDIA
Corporation. It's designed to make our lives as programmers simpler and help us fully
leverage the power of the incredibly powerful parallelism that our GPUs have to offer for
general purpose programming.

With CUDA, we are able to craft our Python programs in a way that is familiar to us while
sprinkling in some of the keywords that CUDA has to offer in order to fully utilize the GPU.
These keywords allow us to map appropriate sections of our code base that deal with the
particularly computationally expensive calculations to massively parallel hardware and
thus drastically improve performance.

Using the GPU

[289]

Working with CUDA without a NVIDIA graphics
card
Ultimately, one of the biggest blockers to working with CUDA directly and the likes of
libraries such as is the lack of the appropriate hardware. Fortunately, there are
workarounds to this seemingly glaring issue that will enable you to utilize these libraries.
However, they are unfortunately not free.

The most immediate workaround to this issue is to potentially utilize some of the cloud
offerings that are currently available on the market. AWS, for instance, allows you to work
with servers that feature NVIDIA hardware and pay only for the time that you are actively
using it. This is a relatively more affordable method of getting started, but it requires more
investment in the form of time required to learn to set up and manage the AWS
infrastructure.

The second and the most straightforward option is to go out and purchase a NVIDIA-based
graphics card for your work machine. This presents a fixed upfront cost, and I can fully
appreciate how unaffordable this can be, especially for the latest generation of graphics
cards with the highest specifications.

You should note that while the first option may be more affordable in the short term, I have
seen instances where people have left GPU instances running for extended periods of time
without their knowledge and have racked up a bill that is substantially higher than the total
cost of a new graphics card.

PyCUDA
 is a Python library that exposes the power of NVIDIA's CUDA parallel

computation API to us as Python developers.

The official documentation for PyCUDA can be found at
. This includes the

official source code and a mailing list for those interested.

In this section, we'll cover some basic examples as to how you can utilize PyCUDA for your
computationally heavy programs that require the full power of your NVIDIA GPU.

Using the GPU

[290]

Features
 has a number of interesting features, which I feel should be mentioned at this point:

Object cleanup is tied to the lifetime of objects, and as such, it's easier to write
code that isn't plagued by leaks and won't crash on you after extended periods of
execution.

As previously mentioned, the main benefit of is that it abstracts away the
complexities with things such as and

.

Automatic error checking-- automatically converts any of the errors that
we encounter on our travels into Python exceptions, so no nasty error checking
code has to be written.

--The library is written in C++ which is deviously performant.

Due to length limitations, I will unfortunately not be able to provide full examples of all the
concepts I cover for this library. I will leave this as an exercise for you to piece together full
samples.

Simple example
Let's take a look at the official example that is given on the homepage of . It presents
a very simple introduction to the ecosystem and gives us a base upon which we can
build the foundations of our knowledge.

At the top of our program, we will import both the necessary parts of the module
and the module:

Using the GPU

[291]

Kernels
Kernels are a concept that is transient among all graphics programming and languages.
Kernel functions are a specific kind of GPU function that are meant to be called from CPU
code. So, in theory, our standard Python program runs on top of the CPU and delegates
work to the GPU in the form of these kernel functions.

These kernels tend to look something like this within our Python programs:

There is an excellent online book, The OpenCL Programming Book, which covers in detail the
basics of OpenCL kernel programming. You can find that book at

.

I highly recommend that if you are going to go down the route of working with
and , you actively learn the ins and outs of kernel programming as it will
undoubtedly help you in the long run.

Using the GPU

[292]

GPU arrays
GPU arrays are a very important part of the library. They do the vital job of
abstracting away the complexities of working with the GPU and, instead, allow us to focus
on working with something not too dissimilar from . The class definition
looks something like this:

let's take a look at a quick example as to how you can initiate your own gpuarray instance.
We'll instantiate an instance of our gpuarray by calling gpuarray.to_gpu(). We'll then define
a.tripled which will equate to all of the contents of our randomly filled gpuarray tripled.
Finally we'll print out the results to the console.

Note: Due to brevity concerns, I'm not able to go into the same level of
depth that the official documentation does. I highly recommend you check
it out at .

Numba
The Python compiler from continuum analytics helps make highly parallelizable,
incredibly powerful performance from an interpreted language a reality.

Note: The documentation on the official pydata website provides a
comprehensive overview of what Numba is and how you can
leverage it in your own Python programs. You can find it at

.
In this section, we'll have a look at the ecosystem surrounding , which takes its form
in the shape of Anaconda. We'll also look at how you can then leverage alongside
numerous other packages in order to effectively and efficiently perform analysis of big data.
We'll cover some of the basics of and then work our way into the more complex
aspects such as utilizing GPUs and APUs within our program.

Using the GPU

[293]

Overview
 is very cool in the sense that it generates optimized machine code from pure Python

code using the LLVM compiler infrastructure. By making slight modifications to our
existing code, we can see incredible differences in the way our programs performs.

Features of Numba
 has three key main features, which make it incredibly attractive to us as developers.

These are as follows:

On-the-fly code generation
Native code generation for both CPUs (by default) and GPUs
Integration with the Python scientific software stack

It's also available across the three main operating systems for both Python 2 and Python 3,
so thankfully, you don't have to jump back in time and rely on the older version of Python
if you are wanting to use .

LLVM
LLVM for the uninitiated, or even just the interested, is the full moniker for a project that is
made up of a collection of modular and reusable compiler and toolchain technologies. It
began as a research project and has since outgrown its original shell into something that is
widely respected by nearly everybody who takes an interest in compiler technologies.

It focuses on creating optimal low-level code, be that either intermediate code or binary. It's
written primarily in C++ and is the underlying base for a wide number of languages and
projects, such as the following:

Ada
Fortran
Python
Ruby

For those of you interested in building your own compiler, I highly recommend this article
at .

Using the GPU

[294]

Cross-hardware compatibility
While this chapter may be on general programming on a GPU, you should note that
is incredibly versatile, in the sense that it can support the compilation of Python to run on
either CPU or GPU hardware. Also, the example in this section can be run on top of a wide
range of different GPUs that are not necessarily of the NVIDIA variety.

Python compilation space
Before going deeper into the library, I feel it's important to understand the key
differences between how your standard CPython program is compiled and executed, and
how your Python program is compiled and executed. This is shown in the following
comparison:

Using the GPU

[295]

Just-in-Time (JiT) versus Ahead-of-Time (Aot)
compilation
This concept of two different types of compilation may be somewhat alien to a lot of people,
so I feel it's important to highlight the differences between these two different types and
when and where each type is used.

Just-in-Time (JiT) compilation is something that can remove the interpreter overhead of the
Python code that you've written, which can result in a drastic speed up of your program. By
removing the overhead of interpretation, we come closer in terms of performance to that of
a compiled language such as your standard C or C++. While Numba does employ JiT
compilation, it's important to note that though it may help remove the overhead of
interpretation, you will likely never see a speed up that brings your code in line in terms of
performance to that of C; it merely helps bring us closer.

Ahead-of-time, or AoT compilation, is where a function is compiled into an on-disk binary
object that can then be distributed and executed independently. This is the technique that
languages such as C, C++, or Fortran typically employ. The benefits of this are that no
interpretation of code is necessary, and your machine is focused on just running the pre-
built binary file as opposed to compiling the binary code and executing it at the same time.

The Numba process
From the first glance at the documentation, you may think that the easiest way to
improve the total performance of Python code is to just append the decorator to every
function within your code and expect huge gains. In reality, however, this is very rarely the
case, and you may find yourself not realizing the full benefits of the library.

There is an excellent talk by Stanley Seibert, who happens to be one of the scientific
software developers working at Continuum Analytics, in which he outlines five distinct
steps you should follow in order to effectively use . They are as follows:

Start off by creating a realistic benchmark test case. This should ideally give you1.
realistic metrics as to how your systems function under load and should not just
be your standard unit test library.
Utilize profilers and run this on your benchmark. An ideal candidate for this is2.
the cProfile tool that we covered in detail in , Debug and Benchmark.

Using the GPU

[296]

Identify hotspots within your code that require more time to execute.3.
Utilize the and decorators as needed for your4.
critical functions.
Rerun benchmarks and analyze the results to determine if what you’ve done has5.
actually improved the performance of your programs.

You can find his original talk on YouTube at
. I highly recommend you check it out.

Anaconda
Before you can get started with Numba, you will have to install the Anaconda package from
the Continuum Analytics website. The link to it is .

Anaconda is an incredibly powerful and respected part of the Python data science
ecosystem. It is open source and features a high-performance distribution of both Python
and the R programming language. If you've never seen or heard about R, then I suggest you
have a look at it. R is the de facto choice for data scientists and quants when it comes to
performing analysis and trying to work with incredibly huge datasets.

Anaconda also comes with its own package and dependency manager, Conda. This comes
flush with over 1,000 data science specific packages, at the time of writing this chapter.

Writing basic Numba Python programs
Now that we have covered the essential underlying concepts of how works in terms
of compilation strategies, it's time to start applying these new practices to our own Python
programs.

Let's begin by writing a fairly straightforward Python program. It will contain a function
that will just return the summation of the two values passed into it:

Using the GPU

[297]

We can add lazy compilation to this by importing the decorator from and
subsequently decorating our newly defined summation function, shown earlier, with this
decorator as follows:

This addition of a decorator now means that our function will be compiled.

Compilation options
The decorator takes in a number of keywords that we can use to explicitly tell the
compiler how we want our functions compiler. With these options, we can do things such
as escape from the global interpreter lock (the GIL) or force the use of a specific compilation
mode.

 has two distinct compilation modes, nopython and object mode. Within our
programs, we can explicitly select what mode we'd like to compile our code against and
raise an error should this compilation mode be unattainable.

The nopython mode generates code that does not directly access the Python C API. This
essentially means that the code generated from this will be incredibly quick.

The object mode typically generates code that, in performance terms, isn't far off of that of a
normal interpreted program:

If Numba is able to compile a function down to native code a la the nopython mode we
mentioned earlier, we can then specify this flag. Every time we enter one of these
functions, we can release the GIL.

Using the GPU

[298]

We've seen first hand the impact of the GIL in certain scenarios in numerous chapters
within this book so having this control on such a granular level. When this happens, this
function can run concurrently with other threads that are executing Python, and you should
see some very decent performance gains using this:

By setting the cache option, we effectively tell to store the compiled code for this
particular function in an on-disk cache file. This means that once the function has been
compiled, it should not be recompiled on every execution of your program:

The parallel option is an experimental function that aims to automatically parallelize the
operations within your specified function that are known to have parallel semantics:

Note: This particular feature must be used in conjunction with the
nopython option as shown earlier.

Issues with Numba
One of the most important things you should be aware of when building software systems
using is that it does have its limitations. Type inference is not always possible in
certain scenarios, and when this issue rears its ugly head, you’ll be left scratching your own
head wondering where the issue is.

Using the GPU

[299]

Let's take a look at the example they give in their Troubleshooting and tips section. Imagine
we had a function that featured the @jit(nopython=True) decorator. This takes in arguments
x and y and returns the summation of the two arguments.

If we pass in values 2 and 3 into our function; f(2,3); then we should see numba working as
expected and returning 5. This means that type inference was successful, but what happens
when we pass in something like f(1, (2,))? These two values are of differing types and as
such numba fails to infer what they should be and throws an error that looks like:

Numba on the CUDA-based GPUs
Now that we’ve come to terms with the basics of , it’s time to see how this translates
to using it with GPUs.

Numba on AMD APUs
As of version 0.21 of , we've seen the support for programming on top of
Heterogeneous System Architecture (HSA). HSA, for those who have never heard of it
before, is a standard that essentially aims to combine the performances of both CPUs and
GPUs and give them a shared memory space.

Using the GPU

[300]

If you want to read up more on the release of this feature, then you can check out
. To give you a

brief idea of the power of what APUs can achieve in terms of performance, you should have
a look at the following graph. This displays the speedup ratio of programs running on top
of these APUs versus their performance on NumPy, relative to the number of elements they
would have to each process:

You should see that as the number of elements in an array grows linearly, the performance
that you are able to achieve using HSA grows almost exponentially until it hits around the
11x speedup mark, at which point it starts to take a more linear progression before capping
off at around 15-18x speedup.

Accelerate
Anaconda’s Accelerate package is a package that enables us to leverage the exceptional
performance of Intel CPUs as well as Nvidia’s GPUs. It's an add-on to the anaconda
package that from the documentation features:

Binding to several CUDA libraries such as , , , ,
and

Using the GPU

[301]

Speed-boosted linear algebra operations in , , , and
 libraries using Intel's Math Kernel Library

Accelerated variants of NumPy's built-in UFuncs
Increased-speed Fast Fourier Transformations (FFT) in NumPy

Much like the other libraries in this chapter, it's designed specifically to cope with huge
datasets.

The official documentation of Anaconda’s Accelerate can be found at
 It's unfortunately quite a sparse documentation at the time of

writing this book.

Theano
If you are interested in niche topics such as deep learning and machine learning, then it's
very probable that you may have considered using Theano. Theano is a Python library that
is ideal for working with multi-dimensional arrays such as NumPy’s ndarrays, and it’s
exceptionally performant when it comes to doing so. Theano relies on the GPU in order to
provide performance that can surpass C on a typical CPU many times over.

Requirements
Theano is available for those of us on either Python 2.7 or on a version of Python greater
than 3.3 but less than version 3.6. You'll also need to install NumPy and SciPy. For a fuller
list of requirements, I recommend you check out the official requirements documentation,
which can be found at .

Getting started
Theano is incredibly easy to get started with, and it was a pleasure learning it for the
purpose of this chapter. The official documentation for the library is surprisingly good and
features some excellent examples for getting up to speed and crafting your own performant
Python applications.

Using the GPU

[302]

Very simple example
In this very simple example, we'll start by defining a simple function that will just take in
two numbers and add them together. Now, I'll grant you that this may not be the most
interesting way to showcase the library, but bear with me:

If we were to run that, you should see that there are no real surprises and it outputs 5.0 to
the console:

$ python3.6 02_theano.py

5.0

Adding two matrices
Now, let's build on top of this and define a function that will sum two matrices. Again, we'll
follow the exact same format of our previous example, except for the fact we'll use dmatrix
instead of dscalar:

Using the GPU

[303]

If we then run this program, you should see that has successfully summed the two
matrices before. We will then print out the results to the console:

$ python3.6 03_matrices.py

[[4. 6.]

[8. 10.]]

Fully-typed constructors
The library has a pretty comprehensive array of . We've already
touched upon the dmatrix type and the dscalar type, but it's important to note that there are
a large number of other options available to you. These effectively allow us to leverage
some of the strengths of a strongly typed system. You can see the complete list of all fully
typed constructors at

.

These range from scalars that represent the most basic unit to things such as vectors,
matrices, rows and cols, and tensor objects. If you are going to deal with a lot of
computational modeling of problems, then this list should hopefully help you in your
modeling efforts.

Using Theano on the GPU
 has been designed to abstract away from developers the intricacies of modeling

their computational models. It allows us to write simple code that relies upon incredibly
powerful hardware without too much modification on our part.

Currently, it offers two distinct methods of enabling the utilization of GPUs for the
programs that we write using it. One enables the utilization of any OpenCL device as well
as any NVIDIA cards, and another that will only support NVIDIA cards.

In order to use the GPU, you'll have to set the "device" configuration flag to equal CUDA
for the first, more open method as follows:

$ THEANO_FLAGS='device=cuda' python3.6 04_gpu.py

Alternatively, you can set for the older, less inclusive method:

$ THEANO_FLAGS='device=gpu’ python3.6 04_gpu.py

Using the GPU

[304]

Example
We'll leverage the very convenient example that is provided by the documentation
to test whether or not we have successfully been able to leverage the GPU:

Using the GPU

[305]

When you run the preceding program by itself, you should see something similar to this
output in the console:

$ python3.6 04_gpu.py

[Elemwise{exp,no_inplace}(<TensorType(float64, vector)>)]

Looping 1000 times took 2.136130 seconds

Result is [1.23178032 1.61879341 1.52278065 ..., 2.20771815 2.29967753

 1.62323285]

Used the cpu

Note the fact that it prints out that it used the CPU and not the intended GPU. We can
enforce the utilization of the GPU by setting and then
running our Python program after this as follows:

THEANO_FLAGS=device=cuda0 python3.6 04_gpu.py

Mapped name None to device cuda0: GeForce GTX 680 (cuDNN version 5004)

[GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float64, (False,))>),

HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]

Looping 1000 times took 1.202734 seconds

Result is [1.23178032 1.61879341 1.52278065 ..., 2.20771815 2.29967753

 1.62323285]

Used the gpu

This should then print out that we have successfully used the GPU as opposed to the CPU.

Leveraging multiple GPUs
If you are lucky enough to be able to afford a system that features two high-performance
graphics cards, you’ll be happy to know that provides you with the capability of
using both of these GPUs in parallel. I should warn you now that this is an experimental
part of the library and, as such, there is the potential that it could still lead to anomalies in
the results of your programs.

The official documentation for this can be found at

.

Using the GPU

[306]

Defining the context map
When it comes to leveraging multiple GPUs, we need to first map each of these devices so
that we can then delegate them work. These mappings can be formed of any number of
devices and are made up of a context name plus plus the name of the device that
typically looks like or something to that effect:

Simple graph example
In this example from their documentation, we'll look at how we can achieve the full
utilization of two graphics cards in parallel:

When you run this with two distinct devices, you should see a linear improvement in the
speed that it takes to execute. You should note that at this point, if you don't have multiple
graphics cards, there is still the option to run this on one device by mapping multiple
contexts to that device.

You can achieve this by using the following line of code:

THEANO_FLAGS=”contexts=dev0->cuda0;dev1->cuda0” python myApp.py

Using the GPU

[307]

PyOpenCL
OpenCL, or Open Computing Language in its full form, is a low-level API for
heterogeneous computing that runs on CUDA-powered GPUs. represents the
Python implementation of this API that enables us to write Python applications that
leverage the power of a whole range of different platforms from CPUs, GPUs, DSPs and
FPGAs.

The official documentation for the library can be found at
.

Example
Let's dissect the example that comes in the official documentation. This will act as a perfect
starting point, which we can expand upon later.

We will first import all the necessary modules at the top and alias NumPy and PyOpenCL
as and , respectively. We will then generate two random numbers of type

. We will then create some context within our program, by
calling this with no parameters. This function will interactively allow you to choose what
platforms and devices that your program should run on top of, which is pretty helpful to
get you up and running quickly.

After we’ve created our context, we will then create both our command queues, which take
in our newly created context.

We will then proceed to define our Program object, which takes in our context, an empty
string for the devices, and finally our binary that takes shape in the form of an OpenCL
kernel:

Using the GPU

[308]

Output
I’m running this on my Macbook Pro, which features integrated graphics. You can see that
it first asks me to choose what platform I should run the code on and then which device on
that platform I should run it against:

$ python3.6 06_example.py

Choose platform:

[0] <pyopencl.Platform 'Apple' at 0x7fff0000>

Choice [0]:0

Choose device(s):

[0] <pyopencl.Device 'Intel(R) Core(TM) i5-4288U CPU @ 2.60GHz' on 'Apple'

at 0xffffffff>

[1] <pyopencl.Device 'Iris' on 'Apple' at 0x1024500>

Choice, comma-separated [0]:1

Set the environment variable PYOPENCL_CTX='0:1' to avoid being asked again.

[0. 0. 0. ..., 0. 0. 0.]

0.0

Using the GPU

[309]

Summary
So, let's recap over what we have covered. We looked at what GPUs are in depth as well as
how we could utilize them for more general purpose tasks. We covered some of the more
realistic scenarios that data scientists would typically encounter and why these are ideal
scenarios for us to leverage these GPU wrapper libraries.

We then looked at some of the major libraries that exist today that allow us to leverage the
full power of our graphics processing hardware. You should now have some idea as to how
to get started writing your own GPU- as well as APU-based applications, whether this be
for data science purposes or otherwise.

In the final chapter of this book, we'll take a look back at the different techniques we
covered within this book and summarize some of the key places to use them.

112
Choosing a Solution

In this final chapter, we'll look very briefly at some of the libraries that I have unfortunately
been unable to cover in this book. These will be cursory glances to merely let you know that
there are alternatives on the market. I'm leaving the onus on you to research on these
libraries and get up and running with them if you desire.

We'll also look briefly at the process you should follow in order to effectively choose what
libraries and what programming paradigms you leverage for your Python software
projects. We'll also cover some of the books and learning resources out there that can aid
you in your learning.

Libraries not covered in this book
As a disclaimer, there have been a number of different libraries that I researched while
writing this book. However, due to concerns of brevity, I've had to cap the number of
libraries that I could cover within each chapter.

It would be remiss of me to not present to you some of the excellent resources currently
available that present far more in-depth coverage of some of the topics I've unfortunately
not been able to expand upon. I also feel that it's worthwhile knowing what further material
is available that will continue to expand your knowledge of software engineering with
Python.

Choosing a Solution

[311]

GPU
The GPU presents one of the topics that I feel I could not cover in detail within this book.
There lies an incredible amount of potential in the utilization of the GPU to improve the
performance of your applications, and as such, it's one for which I highly encourage further
study.

PyGPU
PyGPU is one such library that I would encourage further research into. PyGPU is designed
specifically for your image-processing needs, and much like the other GPU based libraries,
it abstracts away the complexities of dealing with low-level GPU APIs in order to achieve
monumental speeds.

It's an embedded language within Python that features most of Python's core features such
as higher order functions, iterators, and list comprehensions, and it's specifically designed
for ease of use when constructing GPU algorithms.

The official documentation for PyGPU can be found at
.

Event-driven and reactive libraries
The event-driven and reactive programming paradigm is one that I find very interesting. It
provides a very intuitive way of solving a somewhat challenging problem, and I've had a
lot of fun crafting some sample projects for this book using both and . It's
important to note that there are other libraries available that fill different needs though.

Tornado
Tornado is a Python web framework and asynchronous networking library. It utilizes non-
blocking network I/O and can subsequently scale to tens of thousands of connections.

The official documentation for Tornado can be found at
.

Choosing a Solution

[312]

It's also very easy to get up and running with a simple Hello World application, which is
the basis of a very simple RESTful API. It looks like this:

Flask
Flask is in the same vein as Tornado. It, however, considers itself a micro framework. It
features an API that is actually far simpler to get up and running with, and you can achieve
the same results as the preceding Tornado example in a total of five lines of code.

An example of a very simple flask application can be found below:

The official documentation for Flask can be found at
.

Choosing a Solution

[313]

Celery
Celery is an asynchronous task, queue/job queue based on distributed message passing, and
it goes hand in hand with some of the aforementioned web frameworks such as Tornado
and Flask. However, it requires some form of broker technology setup, which adds an extra
layer of complexity to your software systems, but is sometimes essential.

These message brokers, if you haven't used them before, are intermediary stops that enable
us to do things such as communication between micro services. They are very heavily used
in enterprise systems, and as such, I would recommend that you read up on them if that's
the environment you are going to be working in.

Celery is currently compatible with four distinct brokers:

RabbitMQ
Redis
Amazon SQS
Zookeeper (experimental compatibility)

Official documentation for the Celery project can be found at
.

Data science
Since university, I've always had an interest in data science, more specifically the art of data
retrieval and how large systems such as Google work in order to deliver you the best
possible search results. If you haven't had a chance to look into it yourself, then I highly
encourage it!

Pandas
Pandas is an open-source library that provides you with very high performance and is used
heavily in data analysis projects. It's more focused on the preparation of data as opposed to
analysis and modeling. It's supposed to perform the work that you'd typically expect
something like the R programming language to solve.

Choosing a Solution

[314]

For data scientists, Pandas is a fantastic supplementary tool that is designed to aid you in
your data science work. The official documentation for Pandas can be found at

.

Matplotlib
Matplotlib offers high-quality 2D visualization of all of the data that you would typically be
performing analysis upon. It's designed specifically to abstract away the difficulties of
working with graphs and lets you focus on what really matters.

The official documentation for matplotlib can be found at
.

TensorFlow
TensorFlow is a rather exciting open source library that is typically used for numerical
computation using a thing known as data flow graphs. Data-Flow Graphs or DFGs for short
are graphs that represent data dependencies between a number of operations (Prof Brewer,
University of California).

Overall TensorFlow is an incredible framework that allows you to build complex AI
leveraging concepts such as deep learning neural networks. It was originally opensourced
by Google back in November of 2015 and since then has gone on to become majorly
successful, garnering it's own TensorFlow conference hosted in Mountain View, CA.

If you wish to learn more about TensorFlow and how you would use it then I
highly recommend you check out their 'Getting Started' guide which can be found
here: https://www.tensorflow.org/get_started/get_started

Designing your systems
Throughout the course of this book, we looked at a multitude of different concepts that each
suit different problem sets. In this section of the chapter, we will look at when and where
each of these distinct concepts are best used.

Choosing a Solution

[315]

You should note that this is mostly advisory; as with everything, there is no silver bullet.
What works for one individual may not work for others. If you are designing enterprise
systems, then I implore you to perform as much research as is heavenly possible before
diving into writing any code.

Some problems will require an eclectic mix of different solutions. Software architecture is an
art that requires a great deal of time and effort to become proficient at but it's incredibly
rewarding once you have become proficient.

Requirements
Before any design work can be done, a considerable amount of time should be spent on
gathering the requirements of your key stakeholders for your project. The amount of time
and effort spent on this portion should be proportionate to the number of stakeholders. If
the project is just for personal use, then it's entirely OK to hack away and play around; but
for serious projects, serious requirements gathering must be done.

When it comes to requirements gathering, there are two distinct types of requirements that
must be determined. These are functional and nonfunctional requirements, both of which
you should have a good understanding of and spend considerable time gathering.

Functional requirements
The first category of these requirements, your functional requirements, defines what the
system must do.

Let's take, for instance, a project that will try to trade on the stock market and earn us a bit
of money. This system should feature the following Functional requirements:

The system must be able to poll the price of a stock every 5 seconds and then act,
if necessary, upon that stock change
The system must be able to make buy and sell trades against "X" stockbroker
The system must be able to keep track of every trade that it executes for
compliance reasons

Non-functional requirements
Non-functional requirements are requirements that determine how a system does
something.

Choosing a Solution

[316]

Let's now look at the nonfunctional requirements for the system we described in the
functional requirements section:

Performance: The system must be performant enough to keep up with the heavy
number of calculations that will need to be done
The system must be able to handle faults well. We don't want a repeat of a
company going broke in 45 minutes due to errors. Refer to

Scalability: The program should be able to scale when we eventually start to
make millions from our successful trading algorithms
Documentation: Most, if not all, software should be documented to some degree,
especially if you are designing enterprise systems.

Design
Once you have a definitive set of requirements, both functional and nonfunctional, then and
only then can you begin to start designing how your software is going to look with regards
to structure.

When it comes to designing your final solution, I can't emphasize enough on spending as
much time as possible researching what is out there and available. Before I start a project, I
can spend days, if not weeks, PoC-ing small concepts with various libraries before I settle
on one.

One thing to watch is what licenses come with each of the particular libraries in question.
You need to ensure that you are using a library that will allow you to sell your finished
product should that be the goal. If you go down the route of using a library that has a
restrictive license, then you could find yourself chained into giving them royalties. For the
majority of libraries featured in this book, however, there are no real issues when it comes
to licensing.

Computationally expensive
We've somewhat covered what the difference is between the use of threads versus
processes when your system is either I/O bound or CPU bound. However, I feel it's
important to highlight what libraries you should be employing for these different scenarios.

Choosing a Solution

[317]

For these computationally heavy applications, you'll typically have to rely on libraries and
modules such as the following ones:

The multiprocessing module: This is for apps that require a fast computation of
relatively small datasets. Ensure that the computation warrants the use of
multiple processes before going down this route.
Libraries such as PyCUDA and Theano: This is for apps that require fast
computation of huge datasets. It is typically used for big data projects.

Event-heavy applications
If your application processes events, be they user-inputted events or programmatically
generated events, then you would typically use libraries such as the following ones:

: This is ideal for your standard event-based programs.
: This is ideal for networking event-driven system. Think web servers.

: This is ideal for systems that deal with data-based events.

I/O-heavy applications
If your application will spend a lot of time performing I/O-based tasks, then it’s a good idea
to leverage the modules such as the standard threading module or, more favorably, the

 module:

The module, which we have covered in a number of the earlier
chapters within this book
The module, specifically concepts such
as , which we covered in , Executors and Pools

I’d specifically lean towards using the module as its API abstracts
away some of the complexities of using multiple threads and is therefore, ideal for these
types of projects.

Recommended design books
While this book may have covered a multitude of different Python libraries, it doesn't cover
that much detail about when and where you should use these particular libraries. There are
a number of excellent books currently available that go into a great depth on the art of
software design. Here, you'll find the two books that I believe are the most worthwhile.

Choosing a Solution

[318]

Software Architecture with Python
Software Architecture with Python by Anand Balachandran is an excellent book that covers
a number of important topics in an almost encyclopedic fashion. Within the covers lie a vast
wealth of information on quite a number topics, such as the following ones:

Writing modifiable and readable code
Testability
Writing applications that scale
Python design patterns

It covers quite a number of other, very important topics to consider when practicing the art
of software architecture.

Python: Master the Art of Design Patterns
Python: Master the Art of Design Patterns covers topics such as object-oriented Python
programming and a multitude of different design patterns that you can employ within your
software systems.

This is an excellent read for those of you wanting a more rounded education in the art of
software design, and it complements the previous book well by covering in more detail the
various well-known design patterns.

Research
If you take one thing from this chapter, it should be that design is important, and by
spending as much time as possible with design, you will be saving yourself much pain and
suffering.

When it comes to researching and designing large software projects, you should attempt to
bear in mind the famous quote by the original Renaissance polymath, Leonardo Da Vinci:

"Simplicity is the ultimate sophistication."

Aim to create software systems that solve your particular problem but also represent the
simplest way you could have solved the said problem. This will make the job of other
developers coming into your team's life much easier once you move on to other projects.

Choosing a Solution

[319]

Summary
Unfortunately, we've reached the end of our journey learning about the ins and outs of
working with concurrency in Python.

Throughout this book, we looked at the fundamental concepts of threads and processes,
which has enabled us to work with more advanced concepts such as event-driven
programming, reactive programming, and so on.

You should now be adept at the art of designing and building asynchronous systems that
handle their workloads in a performant manner. You should also be comfortable with the
different ways you can approach problems and why some ways are better than others.

If you have any questions, feel free to reach out to me either on my Twitter handle
 or through email at . I’m always happy to try and

lend a hand, or if you have any comments or feedback on the book, then I’m always happy
to hear them!

Index

A
Accelerate package
 about
 reference link
action function
arrays
 reference link
as_completed
 example ,
 using
asyncio module
 about
 BoundedSemaphores
 coroutines
 coroutines, synchronization
 event loop
 futures
 protocols
 reference link
 semaphore
 starting
 sub-processes
 tasks
 tasks function
 transports
asyncio programs
 debug mode
 debugging

B
barriers
 about ,
 example ,
benchmarking
 about ,
 timeit module

BoundedSemaphores ,

C
callable
 cancelling
 example ,
callbacks
 chaining
 example ,
 setting
Celery
 about
 reference link
chaining
 about
 chained operators
child threads
 exceptions, catching
class decorator
 about
classification
Client class
client
 about
 example , ,
clock rate
cluster analysis
cold observables
Communicating Sequential Processes (CSP)
 about
 PyCSP
 reference link
compilation options
 about
 cache option
 nogil
 nopython

[321]

 parallel option
compressed files
computer memory architecture styles
 about
 NUMA
 UMA
concurrency
 about , ,
 example ,
 in clock rate
 in CPU
 in multi-core processors
 in single-core CPUs
 Martelli model, of scalability
 reference link
 time sharing
concurrent code
 unit testing
concurrent download
 about
 example ,
concurrent futures
 about ,
 executor objects
concurrent image download
 about
 sequential download
concurrent prime factorization
 about
 example ,
concurrent systems
 properties
concurrent.futures
 in Python 2.7
condition
 definition
 example ,
 main function
 publisher class ,
 subscriber class
context manager
 about , ,
 example , , , , , , ,

 timing

context map
 graph example
Continuum Analytics
 URL
coroutines
 about
 chaining coroutines
 conditions
 events
 example ,
 locks
 queues
 synchronization between
cProfile
 about
 example , ,
CPU-bound bottlenecks
critical sections
 about
 filesystem
 life-critical systems ,
cross-hardware compatibility
 Anaconda
 compilation options
 Just-in-Time (JiT), versus Ahead-of-Time (Aot)

compilation
 Numba process
 Numba Python programs, writing
 Numba, issue
 Python, compilation space
CUDA
 about
 working, without NVIDIA graphics card

D
daemon processes
 about
 example ,
data races
 about
 barriers ,
 bounded semaphores ,
 condition
 events
 join method

[322]

 locks
 RLocks
 RLocks, versus regular locks
 semaphores
data science
 about , ,
 classification
 cluster analysis
 data mining
 machine learning
 Matplotlib
 Pandas
debug mode
 about
 reference link
debugging
 about
 asyncio programs
 context manager, timing
 decorators, utilizing
 exceptions, catching in child threads
 Python Debugger (Pdb)
 single thread, working as ,
decorator
 about ,
 utilizing
deque objects
 about
 example
design aspect, solution
 about
 computationally expensive
 event-heavy applications
 I/O-heavy applications
 references ,
Dining Philosophers
 about ,
 example ,

E
elements, appending
 about
 example ,
elements, inserting
 about

 example
elements, popping
 about
 example ,
Event Handler
event loop
 about , , ,
 close() function
 is_closed() method
 run_forever() method
 run_until_complete() method
 stop() method
event-driven libraries
event-driven programming
 about ,
 event loop
EventEmitters
events
 about
 clear()
 emitting
 example , ,
 isSet()
 set()
 wait()
exception classes
 about
 example ,
exceptions
 catching, in child threads
 handling
 pipes, using ,
executor objects
 about
 context manager
 maps
 shutdown
 shutdown, example ,
 ThreadPoolExecutor, creating

F
FIFO (first in first out) queues
 about
 example ,
Flask

[323]

 about
 reference link
fork
 used, for process starting
forking
 about
 example
forkserver
full/empty queues
 about
 example
fully-typed constructors
 reference link
future objects, unit testing
 about
 set_exception() method
 set_result() method
 set_running_or_notify_cancel() method
future objects
 .done() method
 .exception() method
 .running() method
 about
 add_done_callback() method
 as_completed, using
 callable, cancelling
 callbacks, setting
 cancel() method
 exception classes
 methods
 result() method
 result, obtaining
futures
 about
 example
 reference link

G
gevent
 about
 event loop
 features
 greenlets
 hostnames example
 monkey patching

 reference link
global interpreter lock (GIL)
 about , ,
 reference link
 sub-processes, utilizing
 working around ,
GPU programming
 about
 OpenCL
 PyCUDA
 Theano
Graphics Processing Units (GPU)
 about , ,
 arrays
 context map, defining
 data science
 PyGPU
 reference link
 Theano, using
 using
greenlets

H
hot observables

I
I/O bottlenecks
inter-process communication (IPC)
IronPython

J
join method
 about
 example ,
 implementing
join() function
 about
 example ,
Jython

K
kernel
 about
 reference link

[324]

L
lambda functions
 about
 example ,
 on_completed function
 on_error function
libraries
 about
 data science
 event-driven libraries
 GPU
 reactive libraries
LIFO (last in first out) queues
 about
 example ,
line_profiler tool
 about
 Kernprof , ,
 reference link
Listener class
listener
 about
 example , ,
lists
 about
 example
 filtering
LLVM
 about
 reference link
locks
 about
 example ,
logging
 about
 example ,
 reference link

M
machine learning
main thread
 about
 example
many-to-many mapping

many-to-one mapping
maps
 about
 example
Martelli model
 of scalability
Matplotlib
 reference link
memory profiling
 about
 graphs , ,
monkey patching
 about
 reference link
multi-core processors
 about
 advantages
 disadvantages
multicasting
 about
 example ,
multiple instruction multiple data (MIMD)
multiple instruction single data (MISD)
multiprocessing managers
 about ,
 clients
 listeners
 logging
 namespaces
 queues
multiprocessing pools
 about
 context manager
 tasks, submitting to process pool
 versus concurrent.futures.ProcessPoolExecutor

,
multiprocessing
 about
 concurrent prime factorization
 disadvantages
 event-driven programming
 number crunching, improved
 sequential prime factorization
 turtle
multithreading ,

[325]

multithreading models
 about
 many-to-many mapping
 many-to-one mapping
 one-to-one thread mapping

N
namespaces
 about
 example ,
NUMA (Non-uniform Memory Access)
 about
 advantages
 disadvantages
Numba
 about ,
 cross-hardware compatibility
 features
 LLVM
 on AMD APUs
 on CUDA-based GPUs
 reference link ,
NVIDIA graphics card
 avoiding, with CUDA

O
observables
 about
 combining
 example ,
 merge_all() operator
 observers, creating
 Zip() example
observers
 creating
 example , ,
on_error
one-to-one thread mapping
OpenCL
operating system
 thread, handling
operators
 about ,
 example
 filter example

 observables, creating
 observables, error-handling
 observables, filtering
 observables, transforming
orphan processes

P
Pandas
 about
 reference link
paradigm
 reactive libraries
parallel execution
parallelism
 about
 CPU-bound bottlenecks
 in clock rate
 in CPU
 in multi-core processors
 in single-core CPUs
 Martelli model, of scalability
 time sharing
pipes
 about
 anonymous pipes
 example
 named pipes
 using
 working with
POSIX threads
PriorityQueue
 about
 example , ,
process creation
 versus thread creation
 versus thread creation, example
process execution sequence
 solution
Process IDentifier (PID)
 about ,
 used, for identifying process
process pool
 imap
 imap_unordered
 map_async

[326]

 maxtasksperchild
 starmap_async
 starmaps
 tasks, submitting to
process
 about
 advantages
 communication between
 daemon processes
 disadvantages
 exceptions, handling
 forkserver
 identifying, PIDs used
 identifying, with example ,
 lifecycle
 obtaining
 pipes
 pipes, working with
 properties
 spawning
 starting, fork used
 subclassing
 subclassing, with example ,
 terminating
 terminating, with example
ProcessPoolExecutor
 about
 computationally bound problems, speed

improving
 context manager
 creating
 example ,
 exercise
 speed, improving example ,
profiling
 about
 cProfile
 line_profiler tool
 memory profiling
program counter (PC)
protocols
PyCSP
 about
 example
 process

PyCUDA
 about ,
 example
 features
 GPU arrays
 kernels
 reference link
PyFunctional
 about
 action function
 compressed files
 example
 installing
 lists, filtering
 parallel execution
 references
 SQLite3, reading
 SQLite3, writing
 streams function
 transformations function
PyGPU
 reference link
PyOpenCL
 about
 example ,
PyRx
 about
 example ,
Python 2.7
 concurrent.futures
Python Debugger (Pdb)
 about
 example ,
 reference link
Python, limitations
 about
 IronPython
 Jython
 using
Python
 thread
 thread, handling
PyUnit
 about
 example ,

[327]

Q
queue objects
 about
 extending
 extending, example
 full/empty queues
 join() function
queues
 about ,
 example ,
 FIFO (first in first out) queues
 LIFO (last in first out) queues
 PriorityQueue

R
race conditions
 about
 process, execution sequence
Reactive Extensions (RX)
 about
 chaining
 cold observables
 concurrency
 events, emitting
 hot observables
 lambda functions
 multicasting
 observables
 observables, combining
 on_next function
 operators ,
 RxPY, installing
reactive programming
 about ,
 purity, maintaining
 PyRx
ReactiveX framework
 PyRx
regular locks
 versus RLocks
requisites, solution
 about
 function requisites
 non-functional requirements

result
 example ,
 obtaining
RLocks
 about
 example ,
 versus regular locks
rotation
 about
 example ,
Rx flavors
 reference link
RxPY
 installing

S
semaphores
 about ,
 class definition
 example
 TicketSeller class
sequential download
 about
 example
sequential prime factorization
 about
 example
sets
 about
 class, extending
 primitives, extending
 URL, for example
shared resources
 about
 barriers ,
 bounded semaphores ,
 condition
 events
 join method
 locks
 RLocks
 RLocks, versus regular locks
 semaphores
SIMD (single instruction stream)
single instruction single data (SISD)

[328]

single thread
 working as ,
single-core CPUs
 about
 advantages
 disadvantages
solution
 design aspect
 requisites
 researching
 selecting
SQLite3
 reading
 writing
standard data structures
 about
 class decorator
 decorator ,
 deque objects
 elements, appending
 elements, inserting
 elements, popping
 lists
 queue objects
 queues
 rotation
 sets
state flow chart
streams function
sub-processes
 about
 example ,
 reference link
 utilizing
synchronization
 between threads
system architecture styles
 about
 MIMD
 MISD
 SIMD
 SISD

T
task scheduler
tasks function
 about
 as_completed() function
 ensure_future function
 gather function
 wait() function
 wrap_future function
tasks
 about
 all_tasks method
 apply_async
 applying
 cancel() function
 current_tasks() function
 example
 map
 submitting, to process pool
testing
 concurrent code, unit testing
 concurrent software systems
 considerations
 integration tests
 need for
 strategies
 unit tests
Theano
 about ,
 example ,
 fully-typed constructors
 GPUs, leveraging
 matrices, adding example
 reference link
 requisites
 requisites, reference link
 using, on GPU
thread class
 example ,
 inheriting from
thread creation
 versus processes creation
thread state
 about

[329]

 examples ,
thread-safe communication structures
 defining
 web Crawler example
thread
 about
 active thread
 active thread, example
 critical sections
 current thread, obtaining
 daemonizing
 daemonizing, example
 Dining Philosophers ,
 ending
 ending, best practice
 ending, example
 enumerating
 enumerating, example
 example, for obtaining current thread
 example, for slowing down program
 forking
 handling, by operating system
 handling, in Python
 identifying
 identifying, example
 in Python
 loads, example
 loads, starting
 orphan processes
 POSIX threads
 race conditions
 starting
 state flow chart
 synchronization
 types ,
 used, for programs slowing down
 Windows threads
ThreadPoolExecutor
 creating
 example ,
TicketSeller class
 example ,
 thread race
timeit module
 about

 command-line example
 importing, into code
 reference link
 versus time module
Tornado
 about
 reference link
transformations function
transports
 about
 methods
 types
turtle
 about
 example ,
twisted
 about
 web server example

U
UMA (Uniform Memory Access)
 about
 advantages
 disadvantages
unit tests
 about
 PyUnit
 test suite, expanding

W
Wait state
web Crawler example
 about
 conclusion ,
 Crawler class ,
 design
 enhancement
 implementing ,
 queue object, extending
 requisites
 testing
web crawler, improving plans
 about
 code, refactoring
 improvement example

 results, storing in CSV file ,
web crawler
 improving

 info, capturing from page crawl
 reference link ,
web server
Windows threads

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Speed It Up!
	History of concurrency
	Threads and multithreading
	What is a thread?
	Types of threads

	What is multithreading?

	Processes
	Properties of processes

	Multiprocessing
	Event-driven programming
	Turtle
	Breaking it down

	Reactive programming
	ReactiveX - RxPy
	Breaking it down

	GPU programming
	PyCUDA
	OpenCL
	Theano

	The limitations of Python
	Jython
	IronPython
	Why should we use Python?

	Concurrent image download
	Sequential download
	Breaking it down

	Concurrent download
	Breaking it down

	Improving number crunching with multiprocessing
	Sequential prime factorization
	Breaking it down

	Concurrent prime factorization
	Breaking it down

	Summary

	Chapter 2: Parallelize It
	Understanding concurrency
	Properties of concurrent systems

	I/O bottlenecks
	Understanding parallelism
	CPU-bound bottlenecks

	How do they work on a CPU?
	Single-core CPUs
	Clock rate
	Martelli model of scalability
	Time-sharing - the task scheduler
	Multi-core processors

	System architecture styles
	SISD
	SIMD
	MISD
	MIMD

	Computer memory architecture styles
	UMA
	NUMA

	Summary

	Chapter 3: Life of a Thread
	Threads in Python
	Thread state
	State flow chart
	Python example of thread state
	Breaking it down

	Different types of threads
	POSIX threads
	Windows threads

	The ways to start a thread
	Starting a thread
	Inheriting from the thread class
	Breaking it down

	Forking
	Example
	Breaking it down

	Daemonizing a thread
	Example
	Breaking it down

	Handling threads in Python
	Starting loads of threads
	Example
	Breaking it down

	Slowing down programs using threads
	Example
	Breaking it down

	Getting the total number of active threads
	Example
	Breaking it down

	Getting the current thread
	Example
	Breaking it down

	Main thread
	Example
	Breaking it down

	Enumerating all threads
	Example
	Breaking it down

	Identifying threads
	Example
	Breakdown

	Ending a thread
	Best practice in stopping threads
	Example
	Output

	Orphan processes

	How does the operating system handle threads
	Creating processes versus threads
	Example
	Breaking it down

	Multithreading models
	One-to-one thread mapping
	Many-to-one
	Many-to-many

	Summary

	Chapter 4: Synchronization between Threads
	Synchronization between threads
	The Dining Philosophers
	Example
	Output

	Race conditions
	Process execution sequence
	The solution

	Critical sections
	Filesystem
	Life-critical systems

	Shared resources and data races
	The join method
	Breaking it down
	Putting it together

	Locks
	Example
	Breaking it down

	RLocks
	Example
	Breaking it down
	Output

	RLocks versus regular locks
	Condition
	Definition
	Example
	Our publisher
	Our subscriber
	Kicking it off

	The results

	Semaphores
	Class definition
	Example
	The TicketSeller class
	Output
	Thread race

	Bounded semaphores
	Events
	Example
	Breaking it down

	Barriers
	Example
	Breaking it down
	Output

	Summary

	Chapter 5: Communication between Threads
	Standard data structures
	Sets
	Extending the class
	Exercise - extending other primitives

	Decorator
	Class decorator
	Lists
	Queues
	FIFO queues
	Example
	Breaking it down
	Output

	LIFO queues
	Example
	Breaking it down
	Output

	PriorityQueue
	Example
	Breakdown
	Output

	Queue objects
	Full/empty queues
	Example
	Output

	The join() function
	Example
	Breakdown
	Output

	Deque objects
	Example
	Breakdown
	Output

	Appending elements
	Example
	Breaking it down
	Output

	Popping elements
	Example
	Breaking it down
	Output

	Inserting elements
	Example
	Breaking it down
	Output

	Rotation
	Example
	Breaking it down
	Output

	Defining your own thread-safe communication structures
	A web Crawler example
	Requirements
	Design
	Our Crawler class
	Our starting point
	Extending the queue object
	Breaking it down
	Output

	Future enhancements
	Conclusion
	Exercise - testing your skills

	Summary

	Chapter 6: Debug and Benchmark
	Testing strategies
	Why do we test?
	Testing concurrent software systems
	What should we test?
	Unit tests
	PyUnit
	Example
	Output

	Expanding our test suite

	Unit testing concurrent code
	Integration tests

	Debugging
	Make it work as a single thread
	Pdb
	An interactive example

	Catching exceptions in child threads

	Benchmarking
	The timeit module
	Timeit versus time
	Command-line example
	Importing timeit into your code

	Utilizing decorators
	Timing context manager
	Output

	Profiling
	cProfile
	Simple profile example

	The line_profiler tool
	Kernprof

	Memory profiling
	Memory profile graphs

	Summary

	Chapter 7: Executors and Pools
	Concurrent futures
	Executor objects
	Creating a ThreadPoolExecutor
	Example
	Output

	Context manager
	Example
	Output

	Maps
	Example
	Output

	Shutdown of executor objects
	Example
	Output

	Future objects
	Methods in future objects
	The result() method
	The add_done_callback() method
	The .running() method
	The cancel() method
	The .exception() method
	The .done() method

	Unit testing future objects
	The set_running_or_notify_cancel() method
	The set_result() method
	The set_exception() method

	Cancelling callable
	Example
	Output

	Getting the result
	Example
	Output

	Using as_completed
	Example
	Output

	Setting callbacks
	Example
	Output
	Chaining callbacks

	Exception classes
	Example
	Output

	ProcessPoolExecutor
	Creating a ProcessPoolExecutor
	Example
	Output

	Context Manager
	Example
	Output

	Exercise
	Getting started

	Improving the speed of computationally bound problems
	Full code sample
	Output

	Improving our crawler
	The plan
	New improvements
	Refactoring our code
	Storing the results in a CSV file

	Exercise - capture more info from each page crawl

	concurrent.futures in Python 2.7
	Summary

	Chapter 8: Multiprocessing
	Working around the GIL
	Utilizing sub-processes
	Example
	Output

	The life of a process
	Starting a process using fork
	Spawning a process
	Forkserver
	Daemon processes
	Example
	Breaking it down
	Output

	Identifying processes using PIDs
	Example
	Output

	Terminating a process
	Example

	Getting the current process
	Subclassing processes
	Example
	Output

	Multiprocessing pools
	The difference between concurrent.futures.ProcessPoolExecutor and Pool
	Context manager
	Example
	Output

	Submitting tasks to a process pool
	Apply
	Apply_async
	Map
	Map_async
	Imap
	Imap_unordered
	Starmap
	Starmap_async
	Maxtasksperchild

	Communication between processes
	Pipes
	Anonymous pipes
	Named pipes

	Working with pipes
	Example

	Handling Exceptions
	Using pipes

	Multiprocessing managers
	Namespaces
	Example

	Queues
	Example
	Output

	Listeners and clients
	Example
	The Listener class
	The Client class
	Output

	Logging
	Example

	Communicating sequential processes
	PyCSP
	Processes in PyCSP
	Output

	Summary

	Chapter 9: Event-Driven Programming
	Event-driven programming
	The event loop

	Asyncio
	Getting started
	Event loops
	The run_forever() method
	The run_until_complete() method
	The stop() method
	The is_closed() method
	The close() function

	Tasks
	Example
	The all_tasks(loop=None) method
	The current_tasks() function
	The cancel() function

	Task functions
	The as_completed(fs, *, loop=
	The ensure_future(coro_or_future, *, loop=
	The wrap_future(future, *, loop=
	The gather(*coroes_or_futures, loop=
	The wait() function

	Futures
	Example
	Output

	Coroutines
	Chaining coroutines
	Output

	Transports
	Protocols
	Synchronization between coroutines
	Locks
	Queues
	Events and conditions

	Semaphores and BoundedSemaphores
	Sub-processes

	Debugging asyncio programs
	Debug mode

	Twisted
	A simple web server example

	Gevent
	Event loops
	Greenlets
	Simple example-hostnames
	Output

	Monkey patching

	Summary

	Chapter 10: Reactive Programming
	Basic reactive programming
	Maintaining purity

	ReactiveX, or RX
	Installing RxPY
	Observables
	Creating observers
	Example
	Example 2
	Breaking it down
	Output

	Lambda functions
	Example
	Breaking it down
	On_next, on_completed, and on_error in lambda form
	Output

	Operators and chaining
	Filter example
	Breaking it down
	Chained operators

	The different operators
	Creating observables
	Transforming observables
	Filtering observables
	Error-handling observables

	Hot and cold observables
	Emitting events
	Example
	Breaking it down
	Output

	Multicasting
	Example
	Output

	Combining observables
	Zip() example
	Output
	The merge_all() operator
	Output

	Concurrency
	Example
	Output

	PyFunctional
	Installation and official docs
	Simple example
	Output

	Streams, transformations, and actions
	Filtering lists
	Output

	Reading/writing SQLite3
	Compressed files
	Parallel execution

	Summary

	Chapter 11: Using the GPU
	Introduction to GPUs
	Why use the GPU?
	Data science
	Branches of data science
	Machine learning
	Classification
	Cluster analysis
	Data mining

	CUDA
	Working with CUDA without a NVIDIA graphics card

	PyCUDA
	Features
	Simple example
	Kernels
	GPU arrays

	Numba
	Overview
	Features of Numba
	LLVM

	Cross-hardware compatibility
	Python compilation space
	Just-in-Time (JiT) versus Ahead-of-Time (Aot) compilation
	The Numba process
	Anaconda
	Writing basic Numba Python programs
	Compilation options
	nopython
	nogil
	The cache option
	The parallel option

	Issues with Numba

	Numba on the CUDA-based GPUs
	Numba on AMD APUs

	Accelerate
	Theano
	Requirements
	Getting started
	Very simple example
	Adding two matrices
	Fully-typed constructors

	Using Theano on the GPU
	Example

	Leveraging multiple GPUs
	Defining the context map
	Simple graph example

	PyOpenCL
	Example
	Output

	Summary

	Chapter 12: Choosing a Solution
	Libraries not covered in this book
	GPU
	PyGPU

	Event-driven and reactive libraries
	Tornado
	Flask
	Celery

	Data science
	Pandas
	Matplotlib
	TensorFlow

	Designing your systems
	Requirements
	Functional requirements
	Non-functional requirements

	Design
	Computationally expensive
	Event-heavy applications
	I/O-heavy applications

	Recommended design books
	Software Architecture with Python
	Python: Master the Art of Design Patterns

	Research

	Summary

	Index

